地理科学 ›› 2011, Vol. 31 ›› Issue (2): 136-142.doi: 10.13249/j.cnki.sgs.2011.02.136
刘德燕, 丁维新
收稿日期:
2010-05-11
修回日期:
2010-08-06
出版日期:
2011-02-20
发布日期:
2011-02-20
通讯作者:
丁维新,研究员,博导。E-mail:wxding@issas.ac.cn
E-mail:wxding@issas.ac.cn
基金资助:
LIU De-yan, DING Wei-xin
Received:
2010-05-11
Revised:
2010-08-06
Online:
2011-02-20
Published:
2011-02-20
摘要: 综合评述了天然湿地产甲烷菌种类、主要产甲烷途径的空间变异及其影响因子。温度不仅可以改变产甲烷菌群落结构和功能,也可影响产甲烷菌功能发挥,目前有关温度对湿地土壤甲烷产生的影响机制有待揭示。以乙酸为底物的产甲烷菌大多生存于维管束植物生长的湿地,H2/CO2还原则为苔藓泥炭沼泽甲烷产生的主要途径;在pH<4.7的偏酸性湿地中,自由态乙酸可以降低乙酸发酵型产甲烷菌活性,而氢营养型产甲烷菌和部分其他微生物可能具有自身的弥补机制。还提出今后中国沼泽湿地产甲烷菌和甲烷排放有待加强研究的主要内容。
中图分类号:
刘德燕, 丁维新. 天然湿地土壤产甲烷菌及其影响因子研究进展[J]. 地理科学, 2011, 31(2): 136-142.
LIU De-yan, DING Wei-xin. Progress on Spatial Variation of Methanogens and Their Influencing Factors in Natural Wetlands[J]. SCIENTIA GEOGRAPHICA SINICA, 2011, 31(2): 136-142.
[1] International Panel on Climate Change(IPCC).Climate change 2007:The physical science basis[M].Cambridge:Oxford Press,2007. [2] Bloom A A,Palmer P I,Fraser A,et al.Large-scale controls of methanogenesis inferred f rom methane and gravity spaceborne data[J].Science,2010,327:322-325. [3] Zhang G S,Tian J Q,Jiang N,et al.Methanogen community in Zoige wetland of Tibetan plateau and phenotypic characterization of adominant uncultured methanogen cluster ZC-I.Environmental Microbiology[J].2008,10(7):1850-1860. [4] Conrad R.Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments[J].FEMS Microbiology Ecology,1999,28:193-202. [5] Chasar L S,Chanton J P,Glaser P H,et al.Radiocarbon and stable carbon isotopic evidence for transport and transformation of dissolved organic carbon,dissolved inorganic carbon,and CH4 in a northern Minnesota peatland[J].Global Biogeochemical Cycles,2000,14(4):1095-1108. [6] Nakagawa F,Yoshida N,Nojiri Y,et al.Production of methane from alasses in eastern Siberia:Implications from its 14C and stable isotopic compositions[J].Global Biogeochemical Cycles,2002,16:doi:10.1029/2000GB001384. [7] 王德宣,吕宪国,丁维新,等.三江平原沼泽湿地与稻田CH4排放对比研究[J].地理科学,2002,22(4):500~503. [8] 杨红霞,王东启,陈振楼,等.长江口崇明东滩潮间带甲烷(CH4)排放及其季节变化[J].地理科学,2007,27(3):408~413. [9] 马学慧,刘兴土,吕宪国,等.湿地甲烷排放研究简述[J].地理科学,1995,15(2):163~169. [10] Strm L,Ekberg A,Mastepanov M,et al.The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland[J].Global Change Biology,2003,9:1185-1192. [11] Galand P E,Fritze H,Conrad R,et al Pathways for methanogenesis and diversity of methanogenic archaea in three boreal peatland ecosystems[J].Applied and Environmental Microbiollogy,2005,71(4):2195-2198. [12] Metje M,Frenzel P.Effect of temperature on anaerobic ethanol oxidation and methanogenesis in acidic peat from a northern wetland[J].Applied and Environmental Microbiollogy,2005,71:8191-8200. [13] Zhuang Q,Melack J M,Zimov S,et al.Global methane emissions from wetlands,rice paddies,and lakes[J].Eos Eos,Transactions,American Geophysical Union,2009,90(5):37-44. [14] Galand P E,Fritze H,Yrjälä K.Microsite-dependent changes in methanogenic populations in a boreal oligotrophic fen[J].Environmental Microbiology,2003,5(11):1133-1143. [15] Galand P E,Saarnio S,Fritze H,et al.Depth related diversity of methanogen Archaea in Finnish oligotrophic fen[J].FFMS Microbiology Ecology,2002,42:441-449. [16] Kotsyurbenko O R,Chin K J,Glagolev M V,et al.Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberianpeat bog[J].Environmental Microbiology.2004,6:1159-1173. [17] Duddleston K N,Kinney M A,Kiene R P,et al.Anaerobic microbial biogeochemistry in a northern bog:acetate as a dominant metabolic end product[J].Global Biogeochemical Cycles,2002,16:1063,doi:10.1029/2001GB0 01402. [18] Horn M A,Matthies C,Kü1sel K,et al.Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat[J].Applied and Environmental Microbiollogy,2003,69:74-83. [19] Yavitt J B,Basiliko N,Turetsky M,et al.Methanogenesis and methanogen diversity in three peatlands types of the discontinuous permafrost zone,boreal western continental Canada[J].Geomicrobiology Journal,2006,23:641-651. [20] Avery G B,Shannon R D,White J R,et al.Controls on methane production in a tidal freshwater estuary and a peatland:methane production via acetate fermentation and CO2 reduction[J].Biogeochemistry,2003,62:19-37. [21] Ding W X,Cai Z C,Wang D X.Preliminary budget of methane emissions from natural wetlands in China[J].Atmospheric Environment,2004,38:751-759. [22] Wu X L,Chin K J,Conrad R.Effect of temperature stress on structure and function of the methanogenic archaeal community in a rice field soil[J].FFMS Microbiology Ecology,2002,39:211-218. [23] HΦj L,Olsen R A,Torsvik V L.Effects of temperature on the diversity and community structure of known methanogenic groups and other archaea in high Arctic peat[J].The ISME Journal,2008,2:37-48. [24] Chin K J,Lukow T,Conrad R.Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil[J].Applied and Environmental Microbiollogy,1999,65(6):2341-2349. [25] Fey A,Chin K J,Conrad R.Thermophilic methanogens in rice field soil[J].Environmental Microbiology,2001,3(5):295-303. [26] Conrad R,Schutz H,Babbel M.Temperature limitation of hydrogen turnover and methanogenesis in anoxic paddy soil[J].FEMS Microbiology Ecology,1987,45:281-289. [27] Saarnio S,Martikainen P J,Silvola J,et al.Effects of raised CO2 on potential CH4 production and oxidation in,and CH4 emission from,a boreal mire[J].The Journal of Ecology,1998,86:261-268. [28] Le Mer J,Roger P.Production,oxidation,emission and consump tion of methane by soils:a review[J].European Journal of Soil Biology,2001,37:25-50. [29] 丁维新,蔡祖聪.沼泽甲烷排放及其主要影响因素[J].地理科学,2002,22(5):619~625. [30] Amaral J A,Knowles R.Methane metabolism in a temperate swamp[J].Applied and Environmental Microbiollogy,1994,60(11):3945–3951. [31] HΦj L,Olsen R A,Torsvik V L.Archaeal communities in High Arctic wetlands at Spitsbergen,Norway(78°N)as characterized by 16SrRNA gene fngerprinting[J].FEMS Microbiology Ecology,2005,53:89-101. [32] Malmer N,Svensson B M,Wallen B.Interactions between Sphagnum mosses and field layer vascular plants in the development of peat-forming systems[J].Folia Geobotanica,1994,29:483-496. [33] Popp T J,Chanton J P.Methane stable isotope distribution at a Carex dominated fen in north central Alberta[J].Global Biogeochemical Cycles,1999,13:1063-1077. [34] Lindau C W,Bollich P K,DeLaune R D,et al.Methane mitigation in flooded Louisiana rice fields[J].Biology and Fertility of Soils,1993,15:174-178. [35] Kotsyurbenko O R,Nozhevnikova A N,Soloviova T I,et al.Methanogenesis at low temperatures by microflora of tundra wetland soil[J].Antonie Leeuwenhoek,1996,69:75-86. [36] Luli G W,Strohl W R.Comparison of growth,acetate production,and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations[J].Applied and Environmental Microbiollogy,1990,56:1004-1011. [37] Russell J B.Intracellular pH of acid-tolerant ruminal bacteria[J].Applied and Environmental Microbiology,1991,57:3383-3384. [38] Kotsyurbenko O R,Friedrich M W,Simankova MV,et al.Shift from acetoclastic to H2 -dependent methanogenesis in a West Siberian peat bog at low pH and isolation of an acidophilic Methanobacterium strain[J].Applied and Environmemntal Microbiology,2007,73:2344-2348. [39] 王维奇,曾从盛,仝川.潮汐盐湿地甲烷产生及其对硫酸盐响应研究进展[J].地理科学.2010,30(1):157~160. [40] Chin K J,Conrad R.Intermediary metabolism in methanogenic paddy soil and the influence of temperature[J].FEMS Microbiology Ecology,1995,18:85-102. [41] Winfrey M R,Ward D M.Substrates for sulfate reduction and methane production in intertidal sediments[J].Applied and Environmental Microbiology,1983,45:193–199. [42] Oremland R S,Polcin S.Methanogenesis and Sulfate Reduction:Competitive and noncompetitive substrates in estuarine sediments[J].Applied and Environmental Microbiology,1982,44(6):1270-1276. [43] Summons R E,Franzmann P D,Nichols P D.Carbon isotopic fractionation associated with methylotrophic methanogenesis[J].Organic Geochemistry,1998,28:465-475. |
[1] | 姚李忠, 王中华, 徐圣友. 山岳型酒店能源强度与碳排放特征研究[J]. 地理科学, 2020, 40(6): 965-972. |
[2] | 钟聪, 李小洁, 何园燕, 邱微文, 李杰, 张新英, 胡宝清. 广西土壤有机质空间变异特征及其影响因素研究[J]. 地理科学, 2020, 40(3): 478-485. |
[3] | 张向敏, 罗燊, 李星明, 李卓凡, 樊勇, 孙健武. 中国空气质量时空变化特征[J]. 地理科学, 2020, 40(2): 190-199. |
[4] | 王来健, 张绍良, 尹鹏程, 王腊春, 彭山桂. 采煤沉陷湖人工湿地对周边土地价格的溢出效应研究——以徐州市九里湖湿地为例[J]. 地理科学, 2017, 37(8): 1234-1242. |
[5] | 孙朋, 巩杰, 贾珍珍, 谢余初. 基于通径分析的酒金盆地绿洲化时空变化及影响因子研究[J]. 地理科学, 2016, 36(6): 902-909. |
[6] | 王莉雯, 卫亚星. 基于减小叶片水分影响的湿地芦苇氮浓度高光谱反演研究[J]. 地理科学, 2016, 36(1): 135-141. |
[7] | 陈利顶, 贾福岩, 汪亚峰. 黄土丘陵区坡面形态和植被组合的土壤侵蚀效应研究[J]. 地理科学, 2015, 35(9): 1176-1182. |
[8] | 张永领, 董玉龙, 张东. 在三门峡水库影响下黄河有机碳的输送特征[J]. 地理科学, 2015, 35(7): 912-918. |
[9] | 赵雪雁, 薛冰. 干旱区内陆河流域农户对水资源紧缺的感知及适应 ——以石羊河中下游为例[J]. 地理科学, 2015, 35(12): 1622-1630. |
[10] | 廖芳均, 赵东升. 南岭国家级自然保护区森林景观格局变化与动态模拟[J]. 地理科学, 2014, 34(9): 1099-1107. |
[11] | 郗敏, 孔范龙, 吕宪国, 姜明, 李悦. 三江平原沟渠系统水体和底泥的养分特征及效应[J]. 地理科学, 2014, 34(3): 358-364. |
[12] | 李枫, 吴立, 朱诚, 孙伟, 王晓翠, 孟华平, 刘辉, 齐士峥, 龚琪岚, 朱光耀, 周凤琴, 李溯源, 欧阳杰. 江汉平原12.76 cal. ka B.P.以来环境干湿变化的高分辨率研究[J]. 地理科学, 2012, 32(7): 878-884. |
[13] | 杜会石, 哈斯, 李明玉. 1977~2008年延吉市城市景观格局演变[J]. 地理科学, 2011, 31(5): 608-612. |
[14] | 徐明星, 周生路, 王晓瑞, 吴绍华, 曹伟, 张红富. 长江三角洲典型区社会经济发展对土壤重金属累积的影响[J]. 地理科学, 2010, 30(6): 880-885. |
[15] | 董红梅, 赵景波, 宋友桂. 长安少陵塬S4古土壤化学成分与环境变化[J]. 地理科学, 2010, 30(6): 904-909. |
|