地理科学 ›› 2020, Vol. 40 ›› Issue (5): 842-852.doi: 10.13249/j.cnki.sgs.2020.05.019
收稿日期:
2019-06-27
修回日期:
2019-10-14
出版日期:
2020-05-10
发布日期:
2020-08-18
通讯作者:
曾坚
E-mail:619445503@qq.com;13602058416@vip.163.com
作者简介:
沈中健(1991-),男,山东济南人,博士研究生,主要从事城市热环境研究。E-mail: 基金资助:
Received:
2019-06-27
Revised:
2019-10-14
Online:
2020-05-10
Published:
2020-08-18
Contact:
Zeng Jian
E-mail:619445503@qq.com;13602058416@vip.163.com
Supported by:
摘要:
以厦门市为例,基于遥感影像与建筑普查数据,分析了各局部气候区中相关地表因素与热岛强度之间的空间响应规律,以及厦门市各局部气候区中热岛强度与相关地表因素的空间关系。结果表明:研究区热岛强度有显著的空间自相关性,高值区集中于东南部的建设用地及耕地和裸地,低值区聚集于湖泊、河流等水体、湿地以及北部、西北部的林地;普通回归模型不能有效解释空间中相关地表因素与热岛强度之间的关系;空间误差模型的拟合效果优于空间滞后模型,可以更准确分析地表因素与热岛强度之间的空间关系;各局部气候区中可以作为回归模型自变量的地表因素有所不同。作为回归模型的自变量时,植被指数、水体指数、天空视域因子与热岛强度呈负相关关系,建筑密度、不透水面比例与热岛强度呈正相关关系,而建筑体积密度、建筑平均高度、建筑高度差与热岛强度的相关性在各气候区中并不一致。根据研究结论建议保护“补偿区”、分隔“作用区”,综合考虑规划实施策略的可行性,以有效缓解热岛效应。
中图分类号:
沈中健, 曾坚. 厦门市热岛强度与相关地表因素的空间关系研究[J]. 地理科学, 2020, 40(5): 842-852.
Shen Zhongjian, Zeng Jian. Spatial Relationship of Heat Island Intensity to Correlated Land Surface Factors in Xiamen City[J]. SCIENTIA GEOGRAPHICA SINICA, 2020, 40(5): 842-852.
表1
局部气候分区依据的地表因素"
地表因素 | 简称 | 定义 | 热环境含义 |
---|---|---|---|
天空视域因子 | SVF | 单位地表某一点的天空可视范围 | 反应地表辐射得热、局部气流与散热 |
建筑密度 | BD | 单位地表内建筑基地面积与单位地表面积的比值 | 反应地表辐射得热、局部气流与散热 |
建筑平均高度 | BH | 单位地表内建筑物高度的平均值 | 反应局部气流与散热 |
建筑体积密度 | BVD | 三维空间内建筑体积与总体积的比值 | 反应局部气流与散热 |
建筑高度差 | BH_S | 单位地表内所有建筑高度的标准差 | 反应局部气流与散热 |
不透水面比例 | ISF | 单位地表内不透水面覆盖的比例 | 反应地表辐射得热与地表径流 |
植被指数 | VI | 单位地表内植被覆盖的比例 | 反应地表辐射得热与物质、能量转换 |
水体指数 | WI | 单位地表内水体覆盖的比例 | 反应地表水分与蒸发降温 |
表2
各类局部气候区的地表与热环境特征"
局部气 候区 | 主要地表覆被类型 | 主要地表特征 |
---|---|---|
1区 | 高容积率、高建筑密度的 建设用地 | 建筑分布相对密集,以高层为主,空间相对紧凑 |
2区 | 耕地、裸地、草地 | 空间开阔,植被较为稀疏 |
3区 | 广场、公园、道路等开放空 间及低容积率、低建筑密 度的建设用地 | 植被覆盖率相对较高,不透水面比例较少;建筑分布稀少,空间开阔 |
4区 | 水体、湿地 | 地表以河流、湖泊、湿地为主,水体覆盖率最高 |
5区 | 低容积率、高建筑密度的 建设用地 | 建筑分布密集,以低层或多层为主,高度相差较小,空间较为紧凑 |
6区 | 林地 | 海拔较高,地表以林地为主,植被覆盖率最高且植被分布密集 |
7区 | 容积率、建筑密度相对较低的建设用地 | 建筑分布相对稀少,以多层和高层为主,空间相对开阔 |
表3
各局部气候区热岛强度与地表因素空间自相关显著性检验"
局部气候区 | 1区 | 2区 | 3区 | 4区 | 5区 | 6区 | 7区 | |
---|---|---|---|---|---|---|---|---|
Moran's I | BD | 0.360 (31.106)** | 0.016 (1.877) | 0.125 (9.979)* | 0.04 6(3.328)’ | 0.190 (25.526)** | 0.027 (1.294) | 0.236 (26.362)** |
BVD | -0.326 (-15.085)** | 0.003 (1.868) | 0.125 (10.645)** | 0.047 (6.488) | 0.312 (29.396)** | 0.058 (38.453) | 0.299 (31.854) | |
SVF | -0.014 (-1.126) | -0.192 (-7.668)* | -0.228 (-11.122)** | -0.009 (-2.090)* | -0.319 (-15.717)** | -0.058 (-3.379) | -0.354 (-39.153)** | |
BH | -0.297 (-11.676)? | 0.016 (1.037)’ | 0.132 (2.930)* | 0.003 (1.007) | -0.210 (-22.209)** | 0.032 (2.855) | -0.185 (-19.473)** | |
BH_S | -0.237 (-5.818)* | 0.018 (7.772) | 0.112 (5.274)* | 0.008 (0.612) | -0.274 (-10.315)** | 0.029 (2.640) | -0.247 (-21.964) | |
VI | -0.410 (-29.132)** | -0.190 (-37.980)* | -0.494 (-76.534)** | 0.092 (2.383)* | -0.341 (-19.090)** | -0.592 (-286.360)** | -0.386 (-66.361)** | |
W | -0.054 (-3.068)* | -0.289 (-97.535)** | -0.273 (-30.188)** | -0.461 (-52.033)** | -0.032 (-1.244) | -0.335 (-240.989)** | -0.035 (-1.069)** | |
ISF | 0.342 (23.138)* | 0.281 (96.755)** | 0.262 (30.620)** | 0.054 (0.531) | 0.366 (21.565)** | 0.371 (227.776)** | 0.376 (64.262)** |
表4
各局部气候区的普通线性回归模型参数"
参数 | 局部气候区 | |||||||
---|---|---|---|---|---|---|---|---|
1区 | 2区 | 3区 | 4区 | 5区 | 6区 | 7区 | ||
β | BD | 0.512 (1.232)’ | — | — | — | 0.197 (1.372) | — | 0.387 (1.683)’ |
BVD | -1.270 (-3.387)** | — | 8.034 (1.175) | — | 2.838 (13.677)’ | — | 0.653 (2.379) | |
SVF | -1.834 (-0.376) | -3.557 (-4.462)* | 1.318 (2.588)’ | — | -3.879 (-3.068)* | — | -2.911 (-9.100)** | |
BH | -3.243 (-6.741)** | — | 1.318 (2.588)’ | — | -13.924 (-11.025)** | — | -5.106 (-11.285)** | |
BH_S | -1.121 (-4.424)** | — | 3.554 (5.967)** | — | -2.061 (-6.419)** | — | -0.144 (-0.257) | |
VI | -2.877 (-2.214) * | -16.442 (-19.190)** | -24.292 (-59.246)** | — | -10.489 (-3.213)* | -12.829 (-44.212)** | -10.010 (-7.186)** | |
WI | — | -31.932 (-34.191)** | -20.656 (-41.132)** | -4.598 (-27.784)** | — | -19.201 (43.105)** | — | |
ISF | 14.034 (3.983)** | 4.129 (5.527)** | 3.625 (9.233)** | — | 12.500 (19.232)** | 23.472 (109.500)** | 9.925 (8.267)** | |
ρ | — | — | — | — | — | — | — | |
λ | — | — | — | — | — | — | — | |
Constant | 3.592 (0.753) | 17.349 (13.607)** | 23.102 (32.763)** | -2.253 (-1.074) | 5.168 (4.434)? | 5.970 (11.376)** | 11.902 (7.299)** | |
R2 | 0.349 | 0.204 | 0.233 | 0.277 | 0.211 | 0.440 | 0.358 | |
LIK | -3630.540 | -110584.000 | -103350.000 | -8023.460 | -11859.200 | -139943.000 | -21277.100 | |
AIC | 7279.080 | 221187.000 | 206718.000 | 16064.900 | 23736.500 | 279905.000 | 42572.200 | |
SC | 7329.700 | 221265.000 | 206797.000 | 16123.100 | 23795.900 | 279989.000 | 42637.600 | |
Moran's I (error) | 0.648 | 0.801 | 0.753 | 0.748 | 0.816 | 0.692 | 0.714 |
表5
各局部气候区的空间滞后模型参数"
参数 | 局部气候区 | |||||||
---|---|---|---|---|---|---|---|---|
1区 | 2区 | 3区 | 4区 | 5区 | 6区 | 7区 | ||
β | BD | 1.443 (3.920)** | — | — | — | 1.487 (4.310)** | — | 0.103 (6.020)* |
BVD | -1.354 (-4.092)** | — | 2.445 (9.250)? | — | 1.524 (11.276)** | — | 0.241 (2.481)? | |
SVF | — | -1.469 (-4.065)? | -1.316 (-4.708)** | — | -2.025 (-5.462)? | — | -0.842 (-5.058)** | |
BH | -1.879 (-4.399)** | — | 3.179 (11.047)** | — | 4.866 (5.902)** | — | -1.790 (-6.093)** | |
BH_S | -1.056 (-4.725)** | — | 3.069 (2.541)? | — | -3.777 (-4.625)** | — | -0.396 (-3.088) | |
VI | -0.963 (-6.266)** | -4.220 (-10.803)** | -12.259 (-53.680)** | — | -1.661 (-0.782) | -6.543 (-46.903)** | -6.353 (-7.034)** | |
WI | — | -8.353 (-19.399)** | -9.051 (-32.452)** | -3.837 (-47.755)** | — | -1.936 (-8.910)** | — | |
ISF | 11.445 (6.680)** | 3.159 (9.327)** | 2.382 (11.057)** | — | 11.068 (15.499)** | 6.926 (63.037)** | 5.977 (17.682)** | |
ρ | 0.272 (19.786)** | 0.791 (370.154)** | 0.717 (309.636)** | 0.749 (109.339)** | 0.558 (72.418)** | 0.831 (551.507)** | 0.616 (108.060)** | |
λ | — | — | — | — | — | — | — | |
Constant | 3.514 (0.359) | 2.579 (4.448)** | 9.599 (24.651)** | 2.093 (6.737)’ | 7.345 (13.549) | 4.973 (19.791)** | 5.657 (5.346)** | |
R2 | 0.491 | 0.676 | 0.669 | 0.661 | 0566 | 0.672 | 0.631 | |
LIK | -3909.920 | -83027.700 | -79510.700 | -5880.290 | -11012.700 | -98092.300 | -18701.300 | |
AIC | 7939.850 | 178075.000 | 167041.000 | 12780.600 | 22045.500 | 186205.000 | 36422.600 | |
SC | 6996.100 | 160163.000 | 157130.000 | 11845.300 | 20111.500 | 186298.000 | 36495.300 | |
Moran's I (error) | -0.020 | -0.004 | -0.006 | -0.007 | -0.014 | -0.011 | -0.009 |
表6
各局部气候区的空间误差模型参数"
参数 | 局部气候区 | |||||||
---|---|---|---|---|---|---|---|---|
1区 | 2区 | 3区 | 4区 | 5区 | 6区 | 7区 | ||
β | BD | 0.622 (5.272)* | — | — | — | 0.123 (9.329)? | — | 0.188 (7.893)* |
BVD | -1.669 (-6.227)** | — | 2.306 (4.255)** | — | 0.390 (5.798)** | — | 0.168 (4.350)? | |
SVF | — | -1.727 (-17.861)? | -0.565 (-5.857)* | — | -2.028 (-6.848)** | — | -1.031 (-5.364)** | |
BH | -1.148 (-4.811)** | — | 0.921 (6.431)** | — | -4.659 (-7.147)** | — | -2.791 (-9.908)** | |
BH_S | -0.482 (-4.743)* | — | 1.181 (4.363)* | — | -1.403 (-2.408)? | — | -0.955 (-4.251)** | |
VI | -3.386 (-5.458)** | -12.578 (-31.387)** | -9.536 (-42.126)** | — | -3.449 (-8.696)** | -1.874 (-17.142)** | -1.492 (-5.359)** | |
WI | — | -21.079 (-49.215)* | -9.189 (-32.376)** | -3.958 (-51.723)** | — | -1.169 (-6.080)** | — | |
ISF | 7.194 (8.062)** | 1.313 (3.966)* | 3.083 (14.745)** | — | 8.945 (20.803)** | 8.695 (95.728) ** | 9.622 (29.837)** | |
ρ | — | — | — | — | — | — | — | |
λ | 0.737 (66.524)** | 0.924 (815.931)** | 0.859 (522.868)** | 0.873 (177.572)** | 0.874 (207.954)** | 0.980 (276.041)** | 0.851 (226.853)** | |
Constant | 7.279 (6.404)** | 18.635 (39.047) ** | 12.524 (44.099) ** | 3.867 (67.263) ** | 6.977 (14.615) ** | 4.082 (22.962)** | 5.268 (15.687)** | |
R2 | 0.759 | 0.882 | 0.843 | 0.835 | 0.868 | 0.936 | 0.846 | |
LIK | -3132.206 | -76101.360 | -72568.277 | -5289.283 | -8211.930 | -66954.617 | -15701.977 | |
AIC | 6282.410 | 152221.000 | 145155.000 | 10596.600 | 16441.900 | 133927.000 | 31422.000 | |
SC | 6333.030 | 152299.000 | 145234.000 | 10654.800 | 16501.300 | 134011.000 | 31487.400 | |
Moran's I (error) | -0.011 | -0.003 | -0.004 | -0.002 | -0.002 | -0.001 | -0.002 |
[1] |
Gao Meiling, Shen Huanfeng, Han Xujun et al. Multiple timescale analysis of the urban heat island effect based on the community land model: A case study of the city of Xi'an, China[J]. Environmental Monitoring and Assessment, 2018,190(1):8.
doi: 10.1007/s10661-017-6320-9 pmid: 29214358 |
[2] |
高文兰, 李双双, 段克勤, 等. 基于均一化资料的西安极端气温变化特征研究[J]. 地理科学, 2018,38(3):464-473.
doi: 10.13249/j.cnki.sgs.2018.03.017 |
[ Gao Wenlan, Li Shuangshuang, Duan Keqin et al. Changes of extreme temperature events in Xi’an city based on homogenized data. Scientia Geographica Sinica, 2018,38(3):464-473.] | |
[3] |
Song Xiaopeng, Hansen M C, Stehman S V et al. Global land change from 1982 to 2016[J]. Nature, 2018,563(7732):E26.
doi: 10.1038/s41586-018-0573-5 pmid: 30275480 |
[4] |
Yu Zhaowu, Yao Yawen, Yang Gaoyuan et al. Spatiotemporal patterns and characteristics of remotely sensed region heat islands during the rapid urbanization (1995-2015) of Southern China[J]. Science of the Total Environment, 2019,674:242-254.
doi: 10.1016/j.scitotenv.2019.04.088 pmid: 31004900 |
[5] |
Lai Dayi, Liu Wenyu, Gan Tingting et al. A review of mitigating strategies to improve the thermal environment[J]. Science of the Total Environment, 2019,661:337-353.
doi: 10.1016/j.scitotenv.2019.01.062 pmid: 30677681 |
[6] |
匡文慧. 城市土地利用/覆盖变化与热环境生态调控研究进展与展望[J]. 地理科学, 2018,38(10):1643-1652.
doi: 10.13249/j.cnki.sgs.2018.10.008 |
[ Kuang Wenhui. Advance and future prospects of urban land use/cover change and ecological regulation of thermal environment. Scientia Geographica Sinica, 2018,38(10):1643-1652.] | |
[7] | 池腾龙, 曾坚, 王思彤. 基于RS和GIS的郑州市植被覆盖度与地表温度演化研究[J]. 中国园林, 2016,32(10):78-83. |
[ Chi Tenglong, Zeng Jian, Wang Sitong. Research of the relationship between vegetation fraction and evolution of thermal environment in Zhengzhou based on RS and GIS technology. Chinese Landscape Architecture, 2016,32(10):78-83.] | |
[8] |
Wang Chenghao, Wang Zhihua, Wang Chuyuan et al. Environmental cooling provided by urban trees under extreme heat and cold waves in U.S.cities[J]. Remote Sensing of Environment, 2019,227:28-43.
doi: 10.1016/j.rse.2019.03.024 |
[9] |
Wang Yasha, Zhan Qingming, Ouyang Wanlu. How to quantify the relationship between spatial distribution of urban waterbodies and land surface temperature?[J]. Science of the Total Environment, 2019,671:1-9.
doi: 10.1016/j.scitotenv.2019.03.377 pmid: 30925333 |
[10] |
Ronald C Estoque, Yuji Murayama, Soe Myint. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia[J]. Science of the Total Environment, 2017,577:349-359.
doi: 10.1016/j.scitotenv.2016.10.195 pmid: 27832866 |
[11] |
Li Boyan, Wang Wei, Bai Liang et al. Effects of spatio-temporal landscape patterns on land surface temperature: A case study of Xi’an city, China[J]. Environmental Monitoring and Assessment, 2018,190(7):419.
doi: 10.1007/s10661-018-6787-z pmid: 29934727 |
[12] | 宋瑞祥, 张庆国, 孟庆岩, 等. 基于Landsat 8 OLI 数据的合肥市热岛时空特征分析[J]. 安徽农业大学学报, 2016,43(3):474-480. |
[ Song Ruixiang, Zhang Qingguo, Meng Qingyan et al. Landsat 8 OLI data-based analysis of spatial-temporal characteristics of heat island in Hefei. Journal of Anhui Agricultural University, 2016,43(3):474-480.] | |
[13] |
Zhu Xinming, Wang Xuhong, Yan Dajiang et al. Analysis of remotely-sensed ecological indexes' influence on urban thermal environment dynamic using an integrated ecological index: A case study of Xi’an, China[J]. International Journal of Remote Sensing, 2019,40(9):3421-3447.
doi: 10.1080/01431161.2018.1547448 |
[14] | 岳亚飞, 詹庆明, 王炯. 城市热环境的规划改善策略研究——以武汉市为例[J]. 长江流域资源与环境, 2018,27(2):286-295. |
[ Yue Yafei, Zhan Qingming, Wang Jiong. Optimizing the urban thermal environment: A case study in Wuhan, China. Resources and Environment in the Yangtze Basin, 2018,27(2):286-295.] | |
[15] |
Kong Fanhua, Yin Haiwei, James Philip et al. Effects of spatial pattern of greenspace on urban cooling in a large metropolitan area of eastern China[J]. Landscape and Urban Planning, 2014,128:35-47.
doi: 10.1016/j.landurbplan.2014.04.018 |
[16] |
Guo Guanhua, Wu Zhifeng, Chen Yingbiao. Complex mechanisms linking land surface temperature to greenspace spatial patterns: Evidence from four southeastern Chinese cities[J]. Science of the Total Environment, 2019,674:77-87.
doi: 10.1016/j.scitotenv.2019.03.402 pmid: 31004906 |
[17] |
Gunawardena K R, Wells M J, Kershaw T. Utilising green and bluespace to mitigate urban heat island intensity[J]. Science of the Total Environment, 2017,584:1040-1055.
doi: 10.1016/j.scitotenv.2017.01.158 pmid: 28161043 |
[18] | Majid A, Zhang Biao, Xie Gao-di et al. Impact of urban park’s tree, grass and waterbody on microclimate in hot summer days: A case study of Olympic Park in Beijing, China[J]. Urban Forestry & Urban Greening, 2018,32:1-6. |
[19] |
Kim K J, Yi C, Lee S. Impact of urban characteristics on cooling energy consumption before and after construction of an urban park: The case of Gyeongui line forest in Seoul[J]. Energy and Buildings, 2019,191:42-51.
doi: 10.1016/j.enbuild.2019.03.011 |
[20] | Rodler A, Leduc T. Local climate zone approach on local and micro scales: Dividing the urban open space[J]. Urban Climate, 2019,28:100457. |
[21] | 厦门市气象局. 厦门市2016年气候公报[J/OL]. http://fj.cma.gov.cn/xmsqxj/, 2017-03-31. |
[ Xiamen Meteorological Bureau. Xiamen climate bulletin in 2016. http://fj.cma.gov.cn/xmsqxj/, 2017-03-31.] | |
[22] | 福建省统计局. 福建统计年鉴2017[DB/OL]. http://tjj.fujian.gov.cn/, 2017-09-04. |
[ Fujian Bureau of Statistics. Fujian statistical yearbook 2017. http://tjj.fujian.gov.cn/, 2017-09-04.] | |
[23] |
Duan Sibo, Li Zhaoliang, Wang Chengguan et al. Land-surface temperature retrieval from Landsat 8 single-channel thermal infrared data in combination with NCEP reanalysis data and ASTER GED product[J]. International Journal of Remote Sensing, 2019,40(5-6):1763-1778.
doi: 10.1080/01431161.2018.1460513 |
[24] |
Ren Chao, Cai Meng, Li Xinwei et al. Assessment of local climate zone classification maps of cities in China and feasible refinements[J]. Scientific Reports, 2019,9:18848.
doi: 10.1038/s41598-019-55444-9 pmid: 31827216 |
[25] | Aminipouri M, Rayner D, Lindberg F et al. Urban tree planting to maintain outdoor thermal comfort under climate change: The case of Vancouver's local climate zones[J]. Building and Environment, 2019,158:226-236. |
[26] |
Mehrotra S, Bardhan R, Ramamritham K. Outdoor thermal performance of heterogeneous urban environment: An indicator-based approach for climate-sensitive planning[J]. Science of the Total Environment, 2019,669:872-886.
doi: 10.1016/j.scitotenv.2019.03.152 pmid: 30897443 |
[27] | Mirzaee S, Ozgun O, Ruth M et al. Neighborhood-scale sky view factor variations with building density and height: A simulation approach and case study of Boston[J]. Urban Climate, 2018,26:95-108. |
[28] | 闫广华, 苏俊如, 管敦颐. 大连市中山区城市建筑垂直特征对城市热环境效应的影响[J]. 地理科学, 2019,39(1):125-130. |
[ Yan Guanghua, Su Junru, Guan Dunyi. The Impact of urban architectural vertical characteristics on urban thermal environment in Zhongshan district, Dalian. Scientia Geographica Sinica, 2019,39(1):125-130.] | |
[29] | Song Juer, Du Shihong, Feng Xin et al. The relationships between landscape compositions and land surface temperature: Quantifying their resolution sensitivity with spatial regression models[J]. Landscape and Urban Planning, 2014,123:145-157. |
[30] |
Anselin L. Local indicators of spatial association—LISA[J]. Geographical Analysis, 1995,27(2):93-115.
doi: 10.1111/gean.1995.27.issue-2 |
[31] | Anselin L. Spatial econometrics: Methods and models[M]. Dordrecht: Kluwer Academic Publishers, 1988. |
[32] | 许剑辉, 赵怡, 肖明虹, 等. 基于空间自回归模型的广州市NDVI和NDBI与气温关系研究[J]. 国土资源遥感, 2018,30(2):186-194. |
[ Xu Jianhui, Zhao Yi, Xiao Minghong et al. Relationship of air temperature to NDVI and NDBI in Guangzhou city using spatial autoregressive model. Remote Sensing for Land & Resources, 2018,30(2):186-194.] | |
[33] | 胡家昱, 刘丙军. 基于空间自回归和地理加权回归模型的佛山市中心城区河网水系演变驱动分析[J]. 水文, 2019,39(2):7-13. |
[ Hu Jiayu, Liu Bingjun. Analysis of river network changes based on spatial auto-regression and geographic weighted regression model. Journal of China Hydrology, 2019,39(2):7-13.] | |
[34] | 赵美风, 汪德根. 北京城区流动人口扩散格局及驱动机制[J]. 地理科学, 2019,39(11):1729-1738. |
[ Zhao Meifeng, Wang Degen. The spatial sprawl and driving mechanism of the floating population in Beijing metropolitan areas. Scientia Geographica Sinica, 2019,39(11):1729-1738.] |
[1] | 高岩辉, 杨晴青, 梁璐, 赵永宏. 基于POI数据的西安市零售业空间格局及影响因素研究[J]. 地理科学, 2020, 40(5): 710-719. |
[2] | 张向敏, 罗燊, 李星明, 李卓凡, 樊勇, 孙健武. 中国空气质量时空变化特征[J]. 地理科学, 2020, 40(2): 190-199. |
[3] | 王德怀, 李旭东. 贵州乌江流域人口与经济发展协调性研究[J]. 地理科学, 2019, 39(3): 477-486. |
[4] | 李成宇, 张士强, 张伟, 廖显春. 中国省际生态福利绩效测算及影响因素研究[J]. 地理科学, 2019, 39(12): 1875-1883. |
[5] | 闫广华,苏俊如,管敦颐. 大连市中山区城市建筑垂直特征对城市热环境效应的影响[J]. 地理科学, 2019, 39(1): 125-130. |
[6] | 张春梅, 张小林, 徐海英, 卢中辉, 刘传明. 基于空间自相关的区域经济极化结构演化研究——以江苏省为例[J]. 地理科学, 2018, 38(4): 557-563. |
[7] | 柏玲, 姜磊, 周海峰, 陈忠升. 长江经济带空气质量指数的时空特征及驱动因素分析 ——基于贝叶斯空间计量模型的实证[J]. 地理科学, 2018, 38(12): 2100-2108. |
[8] | 匡文慧. 城市土地利用/覆盖变化与热环境生态调控研究进展与展望[J]. 地理科学, 2018, 38(10): 1643-1652. |
[9] | 黄群芳, 陆玉麒. 北京地区城市热岛强度长期变化特征及气候学影响机制[J]. 地理科学, 2018, 38(10): 1715-1723. |
[10] | 范科科, 段利民, 张强, 史培军, 刘剑宇, 顾西辉, 孔冬冬. 基于多种高分辨率卫星数据的TRMM降水数据降尺度研究——以内蒙古地区为例[J]. 地理科学, 2017, 37(9): 1411-1421. |
[11] | 刘清春, 张莹莹, 李传美. 基于空间杜宾模型的山东省制造业时空分异研究[J]. 地理科学, 2017, 37(5): 691-700. |
[12] | 王永明, 王美霞, 吴殿廷, 赵林, 丁建军. 贵州省乡村贫困空间格局与形成机制分析[J]. 地理科学, 2017, 37(2): 217-227. |
[13] | 王雪辉, 谷国锋. 基于市场潜能的城市经济增长空间格局及溢出效应[J]. 地理科学, 2017, 37(11): 1617-1623. |
[14] | 王美雅, 徐涵秋, 付伟, 林中立, 李霞, 张博博, 唐菲. 城市地表水体时空演变及其对热环境的影响[J]. 地理科学, 2016, 36(7): 1099-1105. |
[15] | 周侃. 中国环境污染的时空差异与集聚特征[J]. 地理科学, 2016, 36(7): 989-997. |
|