论文

雅鲁藏布大峡谷羚牛牙齿珐琅质碳、氧同位素组成及其环境意义

展开
  • 1. 中国科学院研究生院计算地球动力学实验室, 北京 100049;
    2. 中国科学院地质 与地球物理研究所, 北京 100029;
    3. 中国科学院地球化学研究所, 贵州 贵阳 550002
李玉梅(1974- ),女,黑龙江省肇源县人,博士,副教授,第四纪地质学和地球化学专业。E-mail:liym@gucas.ac.cn

收稿日期: 2009-03-08

  修回日期: 2009-06-25

  网络出版日期: 2009-11-20

基金资助

国家自然科学基金(40772112;40302034)、中国科学院研究生院院长基金(O65001D)、中国科学院环境地球化学国家重点实验室开放基金。

δ13C, δ18O Values and Their Paleoenvironmental Significance of Modern Asian Takin Tooth Enamel from the Yarlung Zangbo Grand Canyon

Expand
  • 1. Laboratory of Computational Geodynamics, Graduate University of Chinese Academy of Sciences, Beijing 100049;
    2. Institute of Geology and Geophiscs, Chinese Academy of Sciences, Beijing 100029;
    3. Institute of Geochemisty, Chinese Academy of Sciences, Guiyang, Guizhou 550002

Received date: 2009-03-08

  Revised date: 2009-06-25

  Online published: 2009-11-20

摘要

以雅鲁藏布大峡谷的羚牛为主要研究对象,讨论其牙齿珐琅质羟基磷灰石结构碳酸盐的碳、氧同位素组成与生活环境之间的关系。羚牛牙齿的碳同位素组成分布范围相当宽,且随着栖息地海拔高度的增加而变重,反映了食谱中C4植物从无到有、由少到多的变化趋势。C4植物含量最高可能达到70%。这一变化与当地自然带的划分相吻合。羚牛牙齿珐琅质结构碳酸盐的δ18O值分布范围较窄,与海拔高度之间没有明显的相关性。氧同位素分馏可能与水源和物种均有关。

本文引用格式

李玉梅, 刘东生, 洪冰, 储国强, 洪业汤, 朱咏煊, 彭建华, 董丽敏, 韩家懋 . 雅鲁藏布大峡谷羚牛牙齿珐琅质碳、氧同位素组成及其环境意义[J]. 地理科学, 2009 , 29(6) : 917 -922 . DOI: 10.13249/j.cnki.sgs.2009.06.917

Abstract

This paper addresses the δ13C, δ18O values and paleoenvironmental significance of modern Asian takins(Budorcas taxicolor), yaks and cattle-yaks tooth enamel from the Yarlung Zangbo Grand Canyon, and tooth enamel of modern reindeers (Rangifer tarandus) from Svalbard, the Arctic.The Yarlung Zangbo Grand Canyon has a length of about 496.3 km and cuts its way through the eastern Himalayas.Its climate ranges from subtropical to arctic.The takin (Budorcas taxicolor) is a large ungulate belongjing to the Bovidae.There are four subspecies:B.taxicolor taxicolor, B.taxicolor bedfordi, B.taxicolor tibetana and B.taxicolor whitei.B.taxicolor taxicolor is found in the eastern Himalayas, such as the Yarlung Zangbo Grand Canyon.Stable carbon and oxygen isotopic composition of tooth enamel has been established as a valuable tool for reconstructing paleoenvironment.In this paper, tooth enamel samples were obtained from modern Asian takins, yaks, cattle-yaks and reindeers for C and O isotope analysis.δ13C values of takin tooth enamel range from -19.3‰ to -2.2‰.The takins living at an altitude of 1300 m have δ13C values ranging from -19.3‰ to -18.9‰, with an average δ13C value of -19.1‰;δ13C value of takins living at an altitude of 1700 m is -10.7‰;δ13C values of takins living at an altitude of 1830 m are from -10.7‰ to -10.3‰, with an average δ13C value of -10.5‰;takins living at an altitude of 3000 m have δ13C values of -4.6‰ to -2.2‰, with an average δ13C value of -3.4‰.There is a direct correlation between δ13C values of takin tooth enamel and the altitude, a higher altitude equaling a higher δ13C value.This could be due to an association with C4 plants.Higher δ13C values such as -3.4‰ could suggest consumption of large amounts of C4 plants by the animals.It is more likely attributed to the abundance of C4 plants in this area.The lower enamel δ13C values such as -19.1‰ indicate that the takins were feeding predominantly on C3 plants, consistent with the dominance of C3 plant in the lower elevation.δ13C values of reindeers live in Svalbard are -20.2‰ to -17.8‰, with an average δ13C value of -19.0‰, in conformity with the absence of C4 plant in the Arctic.The yak teeth have δ13C values ranging from -15.0‰ to -8.7‰.Cattle-yaks have δ13C values of -12.5‰ and -9.3‰.Maybe these domestic animals were feed with some artificial diet.δ18O values of takin tooth enamel range from -9.8‰ to -5.7‰.The takins live at an altitude of 1300 m, 1700 m, 1830 m and 3000 meters have average δ18O values of -8.1‰, -5.7‰, -6.7‰ and -6.8‰, respectively.The δ18O values of takin tooth enamel do not show a trend with increasing elevation.Average δ18O values of yak tooth enamel are -11.7‰ and -13.6‰.Average δ18O value of cattle-yak tooth enamel is -5.3‰.There are variations among the different species.

参考文献

[1] Deng T,Xue X,Dong J.The evidence of fossil carbon isotopes of the climatic event at the beginning of Quaternary[J].Chinese Science Bulletin,1999,44:477-480.
[2] Morgan M E,Kingston J D,Marino B D.Carbon isotopic evidence for the emergence of C4 plants in the Neogene from Pakistan and Kenya[J].Nature,1994,367:162-165.
[3] Quade J,Cerling T E,Barry J C,et al.A 16-Ma record of paleodiet using carbon and oxygen isotopes in fossil teeth from Pakistan[J].Chemical Geology,1992,94:183-192.
[4] Cerling T E,Harris J M,MacFadden B J.Carbon isotopes,diets of north American equids and the evolution of north American C4 grasslands[M].//Griffiths ed.Stable isotopes.Oxford:BIOS Scientific Publishers Ltd,1998:363-379.
[5] Cerling T E.Paleorecords of C4 plant and ecosystems[M].//Sage B F,Monson R K ed.C4 plant biology.San Diego:Academic Press,1999:445-472.
[6] Deng T,Dong J,Wang Y.Variation of terrestrial ecosystem re-corded by stable carbon isotopes of fossils in northern China during the Quaternary[J].Chinese Science Bulletin,2002,47(1):76-78.
[7] Deng Tao,Li Yumei.Vegetational ecotype of the Gyirong Basin in Tibet,China and its response in stable carbon isotopes of mammal tooth enamel[J].Chinese Science Bulletin,2005,50(12):1225-1229.
[8] Wang Y,Cerling T E,MacFadden B J.Fossil horses and carbon isotopes:new evidence for Cenozoic dietary,habitat,and ecosystem changes in North America[J].Palaeogeography,Palaeoclimatology,Palaeoecology,1994,107:269-279.
[9] Bocherens H,Koch P L,Mariotti A,et al.Isotopic biogeochemistry(δ13C,δ18O)of mammalian enamel from African Pleistocene hominid sites[J].Palaios,1996,11:306-318.
[10] Wang Y,Deng T.A 25 my isotopic record of paleodiet and environmental change from fossil mammals and paleosols from the NE margin of the Tibetan Plateau[J].Earth and Planetary Science Letters,2005,236:322-338.
[11] Wang Y,Deng T,Biasatti D.Ancient diets indicate significant uplift of southern Tibet after ca.7 Ma[J].Geology,2006,34:309-312.
[12] 郑锡澜,常承法.雅鲁藏布江地质构造特征[J].地质科学,1978,2:116~126.
[13] 王树良,孙洪君.测绘在雅鲁藏布大峡谷考察中的作用[J].测绘信息与工程,2000,1:47~50.
[14] 杨逸畴,高登义,李渤生.20世纪末的一次重大地理发现——雅鲁藏布江大峡谷为世界之最的论证[J].地理研究,1996,15(4):1~9.
[15] Pamela Groves,Gerald F Shields.Cytochrome B Sequences Suggest Convergent Evolution of the Asian Takin and Arctic Muskox[J].Molecular Phylogenetics And Evolution,1997,8(3):363-374.
[16] 汪 松.中国濒危动物红皮书:兽类[M].北京:科学出版社,1998:295~312.
[17] 宋延龄,曾治高,张 坚,等.秦岭羚牛的家域研究[J].兽类学报,2000,20(4):241~249.
[18] 曾治高,钟文勤,宋延龄,等.羚牛生态生物学研究现状[J].兽类学报,2003,23(2):161~167.
[19] 刘庆花,史学正,于东升,等.土壤区划类型的参比与属地化研究[J].地理科学,2006,26(2):217~223.
[20] 钟 诚,何宗宜,刘淑珍.西藏生态环境稳定性评价研究[J].地理科学,2005,25(5):573~579.
[21] 李洪权,范广洲,周定文,等.青藏高原春季植被变化特征及其对夏季气温的影响[J].地理科学,2008,28(2):259~265.
[22] 姚 建.雅鲁藏布江大峡谷野生动物考察[J].生物学通报,1999,34(8):41~42.
[23] 孙 航,周浙昆,俞宏渊.喜马拉雅东部雅鲁藏布江大峡湾河谷地区植被组成特点[J].云南植物研究,1997,19(1):57~66.
[24] 李志刚,段焕娥.西北高寒民族地区生态环境问题及农牧业发展——以甘南藏族自治州为例[J].地理科学,2005,25(5):551~555.
[25] Lu Houyuan,Wu Naiqin,Gu Zhaoyan,et al.Distribution of carbon isotope composition of modern soils on the Qinghai-Tibetan Plateau[J].Biogeochemistry,2004,70(2):275-299.
[26] 王君波,朱立平,鞠建廷,等.西藏纳木错东部湖水及入湖河流水化学特征初步研究[J].地理科学,2009,29(2):288~293.
[27] 王建林,欧阳华,王忠红,等.念青唐古拉山东南坡高寒草原生态系统表层土壤有机碳分布特征及影响因素[J].地理科学,2009,29(3):385~390.
[28] 章新平,田立德,刘晶森,等.沿三条水汽输送路径的降水中δ18O变化特征[J].地理科学,2005,25(2):190~196.
文章导航

/