Reviews on methane production and the reaction to sulfate in saline wetlands was made. The results showed that acetate and hydrogen, methylamine, methanol, trimethylamine, methionine were substrates of methane production in saline wetlands. Methane production potentials of tidal saline wetland were lower. The inhibition effects of sulfate on methane production was significant.Substrates, sulfate concentration, temperature and pH value controls the inhibition effects of sulfate on methane production, furthermore, salinity, quantity and activity of methane production bacteria were key factors controlling methane production.
[1] 仝 川,闫宗平,王维奇,等.闽江河口感潮湿地入侵种互花米草甲烷通量及影响因子[J].地理科学,2008,28(6):826~832.
[2] 杨红霞,王东启,陈振楼,等.长江口崇明东滩潮间带甲烷(CH4)排放及其季节变化[J].地理科学,2007,27(3):408~413.
[3] Chmura G L,Anisfeld S C,Cahoon D R,et al.Global carbon sequestration in tidal,saline wetland soils[J].Global Biogeochemical Cycles,2003,17(4):1111,doi:10.1029/2002GB001917.
[4] Purdy K J,Nedwell D B,Embley T M.Analysis of the sulfate-reducing bacterial and methaneogenic Archaeal populations in contrasting Antarctic sediments[J].Applied and Environmental Microbiology, 2003,69(6):3181-3191.
[5] Krüger M,Treude T,Wolters H,et al.Microbial methane turnover in different marine habitats[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2005,227(1-3):6-17.
[6] Kaku N,Ueki A,Ueki K,et al.Methanogenesis as an important terminal electron accepting process in estuarine sediment at the mouth of Orikasa River[J].Microbes and Environments,2005,20(1):41-52.
[7] 叶 勇,卢昌义,林 鹏.厦门东屿白骨壤林土壤甲烷产生量、氧化量、传输率与库量[J].台湾海峡,2001,20(2):236~244.
[8] 卢昌义,叶 勇,林 鹏,等.海南海莲红树林土壤CH4的产生及其某些影响因素[J].海洋学报,1998,20(6):132~138.
[9] 王维奇,曾从盛,仝 川.控制湿地甲烷产生的主要电子受体研究进展[J].地理科学,2009,29(2):300~306.
[10] 丁维新,蔡祖聪.沼泽甲烷排放及其主要影响因素[J].地理科学, 2002, 22(5):619~625.
[11] 王德宣,吕宪国,丁维新,等.三江平原沼泽湿地与稻田CH4排放对比研究[J].地理科学,2002,22(4):500~503.
[12] 闫敏华,华润葵.长春地区稻田甲烷排放量的估算研究[J].地理科学,2000,20(4):386~390.
[13] Conrad R,Klose M.How specific is the inhibition by methyl fluoride of acetoclastic methanogenesis in anoxic rice field soil?[J].FEMS Microbiology Ecology,1999,30:47-56.
[14] Avery G B J R,Shannon R D,White J R,et al.Controls on methane production in a tidal freshwater estuary and a peatland: methane production via acetate fermentation and CO2 reduction[J].Biogeochemistry,2003,62:19-37.
[15] Conrad R.Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal[J].Organic Geochemistry,2005,36:739-752.
[16] Oremland R S,Polcin S.Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments[J].Applied and Environmental Microbiology,1982,44(6):1270-1276.
[17] Summons R E,Franzmann P D,Nichols P D.Carbon isotope fractionation associated with methylotrophic methanogenesis[J].Organic Geochemistry,1998,28:465-475.
[18] Conrad R,Claus P.Contribution of methanol to the production of methane and its 13C-isotopic signature in anoxic rice field soil[J].Biogeochemistry,2005,73(2):381-393.
[19] Nedwell D B,Embley T M,Purdy K J.Sulphate reduction,methanogenesis and phylogenetics of the sulphate reducing bacterial communities along an estuarine gradient[J].Aquatic Microbial Ecology,2004,37:209-217.
[20] Buckley D H,Baumgartner L K,Visscher P T.Vertical distribution of methane metabolism in microbial mats of the Great Sippewissett salt marsh[J].Environmental Microbiology,2008,10(4):967-977.
[21] 王维奇,曾从盛,仝 川.水盐梯度及外来植物入侵对河口湿地土壤甲烷产生潜力的影响[J].农业系统科学与综合研究[J].2009, 25(4):481~486.
[22] Giani L,Bashan Y,Holguin G,et al.Characteristics and methanogenesis of the Balandra lagoon mangrove soils,Baja California Sur,Mexico[J].Geoderma,1996,72:149-160.
[23] Giani L,Dittrich K,martsfeld-Hartmann A, et al.Methanogenesis in saltmarsh soil of the north sea coast of Germany[J].European Journal of Soil Science,1996,47:175-182.
[24] Freeman C,Nevison G B,Kang H,et al.Contrasted effects of simulated drought on the production and oxidation of methane in a mid-Wales wetland[J].Soil Biology and Biochemistry,2002,34:61-67.
[25] Wassmann R,Neue H U,Bueno C,et al.Methane production capacities of different rice soil derived from inherent and exogenous substrates[J].Plant and Soil,1998,203:227-237.
[26] Chin K J,Conrad R.Intermediary metabolism in methanogenic paddy soil and the influence of temperature[J].FEMS Microbiology Ecology,1995,18(2):85-102.
[27] Winfrey M R,Ward D M.Substrates for sulfate reduction and methane production in intertidal sediments[J].Applied and Environmental Microbiology,1983,45(1):193-199.
[28] Finke N,Vandieken V,Jфrgensen B B.Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in arctic marine sediments, Svalbard[J].FEMS Microbiology Ecology,2006,59(1):10-22.
[29] King G M.Utilization of hydrogen,acetate and noncompetitive substrates by methanogenic bacteria in marine sediments[J].Geomicrobiology Journal,1984,3:275-306.
[30] Abdollahi H, Nedwell D B.Seasonal temperature as a factor influencing bacterial sulfate reduction in a saltmarsh sediment[J].Microbial Ecology,1979,5(1):73-79.
[31] Segers R.Methane production and methane consumption: a review of processes underlying wetland methane fluxes[J].Biogeochemistry,1998,41:23-51.
[32] Koschorreck M.Microbial sulphate reduction at low pH[J].FEMS Microbiology Ecology,2008,64(3):329-342.
[33] 曾从盛,王维奇,仝 川,等.不同电子受体及盐分输入对河口湿地土壤甲烷产生潜力的影响[J].地理研究,2008,27(6):1321~1330.
[34] Magenheimer J F,Moore T R,Chmura G L,et al.Methane and carbon dioxide flux from a macrotidal salt marsh,bay of Fundy,New Brunswich[J].Estuaries,1996,19(1):139-145.