基于可能性理论和中心点聚类方法的原理,提出可能性C中心点(PCRMDD)聚类方法。运用该法对上海市中心城区Landsat ETM+遥感影像进行混合像元分类,并自动获取地物端元盖度分布图及影像端元光谱,解混精度的检验结果表明该方法能在噪声环境下获得精度较高的分类结果和端元光谱信息。根据各时期研究区域的地表覆盖分类结果,应用GIS空间分析功能,进一步探讨在城市化过程中上海中心城区土地利用时空演变格局,揭示城市用地空间扩展模式。
In this paper, we propose a Possibilistic C Repulsive Medoids (PCRMDD) clustering algorithm, based on possibility theory and principle of c-medoids clustering method.The PCRMDD algorithm is applied to mixed-pixel classification on Landsat ETM+ images of Shanghai central city, and endmember fraction images and spectral reflectance of endmembers on images are automatically acquired.Accuracy analysis of pixels unmixing demonstrates that PCRMDD represents a robust and efficient tool for mixed-pixel classification on remote sensing imagery to obtain reliable soft classification results and endmember spectral information in noisy environment.Furthermore, according to the obtained multi-temporal land cover classification of the study area, the pattern of spatio-temporal land use evolvement and urban land spatial sprawl with urbanization in Shanghai central city are explored with the application of spatial analytical function of GIS.Results show that the urban land use structure is optimizing during vigorous urban renewal and large-scale development of the whole Pudong District, which will have an active influence to improve urban space landscape and enhance quality of ecological environment.
[1] 范月娇.基于遥感和GIS一体化技术的三峡库区土地利用变化研究[J].地理科学,2002,22(5):593~597.
[2] 唐立娜,陈 春,王庆礼,等.基于遥感的东北农牧交错区景观格局与变化研究——以吉林省长岭县为例[J].地理科学,2005,25(1):81~86.
[3] 肖捷颖,葛京凤,沈彦俊,等.基于TM和ETM+遥感分析的石家庄市土地利用/覆被变化研究[J].地理科学,2005,25(4):495~500.
[4] Markham B L,Townshend J R G.Land cover classification accuracy as a function of sensor spatial resolution [C].//Proc.of 15th International Symposium on Remote Sensing.Ann Arbor,Michigan,1981:1075-1090.
[5] 闻建光,肖 青,柳钦火,等.基于混合光谱理论的太湖水体叶绿素a浓度提取[J].地理科学,2007,27(1):92~97.
[6] Bezdek J C.Pattern recognition with fuzzy objective function algorithms [M].New York:Plenum Press,1981.
[7] Foody G M.Hard and soft classifications by a neural network with a nonexhaustively defined set of classes[J].International Journal of Remote Sensing,2002,23:3853-3864.
[8] Lin C F,Wang S D.Fuzzy support vector machines[J].IEEE Transactions on Neural Networks.2002,13(2):464-471.
[9] Krishnapuram R,Keller J M.A possibilistic approach to clustering[J].IEEE Transactions on Fuzzy Systems,1993,1(2):98-110.
[10] Krishnapuram R,Keller J M.The possibilistic c-means algorithm:Insights and recommendations[J].IEEE Transactions on Fuzzy Systems,1996,4(3):385-393.
[11] Timm H,Kruse R.A modification to improve possibilistic fuzzy cluster analysis[C][C].//Proc.of the 2002 IEEE Int.Conf.on Fuzzy Systems.Vol 2.Honululu:IEEE,2002:1460-1465.
[12] Fu K S.Syntactic pattern recognition and applications[M].San Diego,CA:Academic Press,1982.
[13] Chiu S L.Fuzzy model identification based on cluster estimation[J].Journal of Intelligent and Fuzzy Systems,1994,2:267-278.
[14] 李晓文,方精云,朴世龙.上海城市用地扩展强度、模式及其空间分异特征[J].自然资源学报,2003,18(4):412~422.