论文

中国天山西部季节性森林积雪雪层温度时空分布特征

展开
  • 1. 中国科学院新疆生态与地理研究所, 新疆乌鲁木齐830011;
    2. 中国科学院研究生院, 北京100049;
    3. 中国气象局乌鲁木齐沙漠气象研究所, 新疆乌鲁木齐830002;
    4. 中国科学院天山积雪雪崩研究站, 新疆乌鲁木齐830011

收稿日期: 2010-11-03

  修回日期: 2011-04-20

  网络出版日期: 1997-12-20

基金资助

干旱内陆区冰雪资源动态监测与可持续利用评估研究项目(GYHY200706008);新疆现代与历史暖湿化过程及对生态环境影响项目(2005DIB6J113);新疆生态与地理研究所绿洲学者“博士”人才培养计划(0771021);中国科学院“西部之光”人才培养计划项目(RCPY200902)资助

Spatial and Temporal Distributions of Snow Temperature in Forest of the Western Tianshan Mountains,China

Expand
  • 1. Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China;
    2. Graduate School of Chinese Academy of Sciences, Beijing 100049, China;
    3. Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, China;
    4. Tianshan Station for snow and Avalanche Research, Chinese Academy of Sciences, Urumqi 830011, China

Received date: 2010-11-03

  Revised date: 2011-04-20

  Online published: 1997-12-20

摘要

利用2009年12月27日~2010年4月2日天山积雪站站区内开阔地和雪岭云杉(Picea schrenkiana)林下6次降雪过程后雪层内时间间隔10 min的温度数据,探讨雪层温度变化特征。结果表明,越接近地表雪层温度越高,且在雪层表面形成冷中心和(局部)暖中心;在积雪稳定期林下雪层温度高于开阔地,融雪期林下低于开阔地;林下雪层冷、暖中心出现时间晚于开阔地,其强度也小于开阔地。林下雪层温度振幅小于开阔地,林下温度振幅拐点以上雪层温度振幅随深度和时间的递减率小于开阔地,拐点以下无明显差异。初冬,林下和开阔地雪层均为较小的正温度梯度,随着气温急剧下降,温度梯度逐渐增大,且从雪表向雪底递减,林下雪层负温度梯度出现时间晚于开阔地。开阔地和林下积雪表层正温度梯度最大值分别达到0.95℃/cm和0.82℃/cm,负温度梯度大值分别达到-0.84℃/cm和-0.35℃/cm;但开阔地全雪层日平均温度梯度小于林下雪层。

本文引用格式

陆恒, 魏文寿, 刘明哲, 韩茜, 洪雯 . 中国天山西部季节性森林积雪雪层温度时空分布特征[J]. 地理科学, 2011 , 31(12) : 1541 -1548 . DOI: 10.13249/j.cnki.sgs.2011.012.1541

Abstract

The snow temperature under Picea schrenkiana forest crown and on the open ground was observed at Tianshan Research Station for Snow-cover and Avalanche of the Chinese Academy of Sciences from Dec 27,2009 to Apr 2,2010.The spatial and temporal distributions as well as variations of snow temperature were analyzed in details.The results indicated that there is a higher snow temperature near the ground surface,and local cold and warm centre happen at the snow surface layer.The snow temperature under crown is higher than that on the open ground in stable period,which present a contrary trend in snowmelt period;the low and high temperature centre of forest snow appears later and weaker than that on the open ground.Besides,the decreasing rate of snow temperature amplitude with depth and time under crown is lower than that on the open ground above break point,but there is no statistical difference below break point at early stable period.The snow temperature gradient is small and positive,and it increases with air temperature decreasing but decreases with depth from surface down.The negative temperature gradient of forest snow appeases later than that on the open ground.Under crown and on the open ground,the maximum positive temperature gradient of snow reaches 0.95℃/cm and 0.82℃/cm,and the negative temperature gradient reaches-0.84℃/cm and-0.35℃/cm,respectively.Whereas the whole layer snow temperature gradient under forest crown is larger than that on the open ground.

参考文献

[1] Hedstrom N R,Pomeroy J W.Accumulation of intercepted snow in the boreal forest:measurement modeling[J].Hydrol Processes,1998,12:1611-1623.
[2] Jones H G,Pomeroy J W,Walker D A,et al.雪生态学—覆盖生态系统的交叉学科研究[M].赵哈林,周瑞莲,赵悦译.北京: 海洋出版社,2003:30~83.
[3] 魏文寿,秦大河,刘明哲.中国西北地区季节性积雪的性质和结构[J].干旱区地理,2001,24(4):310~313.
[4] Poots G.Skelton P L I.Thermodynamic models of wet-snow ac-cretion:axial growth and liquid water content on a fixed con-ductor[J].International Journal of Heat and Fluid Flow,1995, 16(1):43-49.
[5] 王彦龙.中国雪崩研究[M].北京.海洋出版社,1992:45~53.
[6] 张志忠,刘正兴.天山积雪雪崩站季节性积雪变质因素分析[C].雪害防治研究(第四集),1985:18~27.
[7] Birkeland K W.Terminology and predominant processes asso-ciated with the formation of weak layers of near-surface facet-ed crystals in the mountain snowpack[J].Arctic and Alpine Re-search,1998,30(2):193-199.
[8] H?geli P,McClung D M.Avalanche characteristics of a transi-tional snow climate--Columbia Mountains,British Columbia, Canada[J].Cold Regions science and Technology,2003,37: 255-276.
[9] Colbeck S C.An overview of seasonal snow metamorphism[J]. Reviews of Geophysics and Space Physics,1982,20(1):45-61.
[10] Miller D A.An Integrated Microstructural Study of Dry Snow Metamorphism Under Generalized Thermal Conditions[D]. Montanaration,Department of Civil Engineering,Montana State University,2002:257.
[11] 张志忠,刘正兴.天山巩乃斯河谷季节积雪变质作用因素分析[J].冰川冻土,1987,9(增刊):27~33.
[12] McClung D.The elements of applied avalanche forecasting. Part II:The physical issues and rules of applied avalanche fore-casting[J].Natural Hazards,2001,26(2):131-146..
[13] Anderson E.A Point Energy and Mass Balance Model of Snow Cover[C].NOAA Technical Report NWS 1,U.S.National Weather Service,Decpt.Of Commerce,Washington,D C,1976.
[14] Jordan R.A One-digressional Temperature Model for a Snow Cover[C].Cold Regions Research and engineering Laboratory, Hanover,NH.1991.
[15] Loth B H,Graf F,Oherhuber J M.Snow cover model for global climate simulations[J].J Geophys Res,1993,98: 1045-1064.
[16] Sun S F,Jin J M,Xue Y K.A simple snow-atmosphere-soil transfer mode1[J].J Geophys Res,l999,104(Dl6):l9587-597.
[17] 陈海山,孙照渤.陆面模式CLSM的设计及性能检验Ⅰ.模式设计[J].大气科学,2004,11(6):801~819.
[18] 王彦龙.我国西部季节性深霜发育与雪崩关系[J].冰川冻土, 1988,10(2):173~180.
[19] 胡汝骥,马维林,魏文寿,等.我国天山降雪与季节性雪崩的基本物理特征[J].干旱区地理,1985,8(1):53~57.
[20] 魏文寿,王存牛,姜逢清,等.中国天山积雪的热量交换与水汽蒸凝过程研究[J].冰川冻土,1996,18(增刊):129~138.
[21] 刘明哲,魏文寿,姜逢清.天山西部山地冬季积雪能量交换特征分析[J].干旱区地理,1997,20(4):68~73.
[22] 梁林恒,周幼吾.大兴安岭阿木尔森林火灾区积雪分布特征调查[J].冰川冻土,1992,14(2):134~140.
[23] Sturm M.Snow distribution and heat flow in the taiga[J]. Arctic alpine Res,1992,24(2):145-152.
[24] Pomeroy J W,Granger R J,Pietroniro A,et al.Hydrological Pathways in the Prince Albert Model Forest:Final Report, NHRI Contribution Series No:CS-97007[R].National Hydrolo-gy Research Institute,Saskatoon.Environment Canada.1997.
[25] 高卫东,魏文寿,张丽旭.近30年来天山西部积雪与气候变化——以天山积雪雪崩研究站为例[J].冰川冻土,2005,27 (1):68~73.
[26] 汪祥森.天山北坡雪岭云杉林调查报告[J].新疆农业科学, 1963,7:285~289.
[27] 马虹,刘一峰,胡汝骥.天山季节性积雪的能量平衡研究和融雪速率模拟[J].地理研究,1993,12(1):87~92.
[28] 谢应钦,张金生.雪层内太阳的穿透辐射[J].冰川冻土, 1998,10(2):135~142.
[29] Sturm M,Holmgren J,Morris K.The thermal conductivity of seasonal snow[J].J Glaciol,1997,43(143):26-41.
[30] Kamata Y,Sokratov S,Sato A..Temperature and temperature gradient dependence of snow recrystallization in depth hoar snow[J].Advances in Cold-Region Thermal Engineering and Sciences,1999,533:395-402.
文章导航

/