论文

基于遥感方法的长白山地区植被物候期变化趋势研究

展开
  • 1. 山西师范大学城市与环境科学学院, 山西 临汾 041000;
    2. 东北师范大学城市与环境科学学院, 吉林 长春 130024

收稿日期: 2010-12-26

  修回日期: 2011-04-27

  网络出版日期: 1997-10-20

基金资助

国家重点基础研究发展规划(973)项目(2009CB426305);国家自然科学基金项目(41171038);东北师范大学“十一五”科技创新平台培育项目(106111065202);吉林省自然科学基金项目(20101561)资助

Growing-season Trends Determined from SPOT NDVI in Changbai Mountains,China,1999-2008

Expand
  • 1. College of Urban and Environmental Science, Shanxi Normal University, Linfen, Shanxi 041000, China;
    2. College ofUrban and Environmental Science, Northeast Normal University, Changchun, Jilin 130024, China

Received date: 2010-12-26

  Revised date: 2011-04-27

  Online published: 1997-10-20

摘要

目前,越来越多的遥感数据被用来监测大面积植物物候的动态变化。利用长时间序列的SPOT/NDVI旬合成数据,通过double logistic模型获取了1999~2008年长白山地区植被的3个关键物候参数:生长季始期、生长季末期和生长季长度的多年平均值,并绘制了它们的变化趋势空间格局图。结果表明,林地的生长季开始日期为第100~120天,草地和耕地相对较晚,分别为第130~140天和第140~150天;林地和草地生长季的结束日期为第275~285天,耕地的相对较早,为第265~275天;林地、草地和耕地的生长季长度范围分别为160~180 d、140~160 d和110~130 d。植被物候期的变化趋势表现为一定的空间差异性,生长季长度延长区域主要分布在长白山地区的中东部,平均每年延长约0.7 d;缩短的区域在西北地区,平均每年缩短1.1 d。最后通过部分物候观测数据及前人在相同研究区的结果验证了利用double logistic模型提取预测长白山植被物候期的可行性。

本文引用格式

李明, 吴正方, 杜海波, 宗盛伟, 孟祥君, 张莲芝 . 基于遥感方法的长白山地区植被物候期变化趋势研究[J]. 地理科学, 2011 , 31(10) : 1242 -1248 . DOI: 10.13249/j.cnki.sgs.2011.010.1242

Abstract

A wealth of remotely sensed image time series is now available to monitor vegetation dynamics over large areas.In this papert,he spatial pattern of three key vegetation phenological metrics,the start of growing season(SOS)t,he end of growing season(EOS),and the length of growing season(LOS)were inferred from the time series SPOT/NDVI data based on double logistic model in Changbai mountains,and the trends of them are assessed.The results show that the SOS of forests focus on dekad 10-12,that of grasslands and crop-lands start relatively late,they are in decad 13-14 and decad 14-15,respectively.The EOS of forests and grasslands range from 275th to 285th dayt,hat of croplands are early relatively,which are between 265th and 275th day.Therefore,the LOS of forests,grasslands and croplands are 160-180 days,140-160 days and 110-130 days,respectively.The trends of phenophases have certain spatial discrepancy,which express that the LOS prolong in middle-eastern areas and shorten in northwestern areas.Then the derived phenological met-rics were validated by a few field observed data and some previous research achievements in the same area.

参考文献

[1] 陈效逑,曹志萍.植物物候期的频率分布型及其在季节划分中的应用[J].地理科学,1999,19(1):21~27.
[2] 竺可桢,宛敏渭.物候学(第二版)[M].长沙:湖南教育出版社,1999:1~3.
[3] 武永峰,李茂松,李京.中国植被绿度期遥感监测方法研究[J].遥感学报,2008,12(1):92~103.
[4] Karlsen S,Solheim I,Beck P,et al.Variability of the start of thegrowing season in Fennoscandia,1982-2002[J].InternationalJournal of Biometeorology,2007,51(6):513-524.
[5] Piao S,Fang J,Zhou L,et al.Variations in satellite-derived phe-nology in China's temperate vegetation[J].Global Change Biol-ogy,2006,12(4):672-685.
[6] Moulin S,Kergoat L,Viovy N,et al.Global-scale assessment ofvegetation phenology using NOAA/AVHRR Satellite measure-ments[J].Journal of Climate,1997,10(6):1154-1170.
[7] Zhang X,Friedl M A,Schaaf C B,et al.Monitoring vegetationphenology using MODIS[J].Remote Sensing of Environment,2003,84(3):471-475.
[8] Archibald S,Scholes R J.Leaf green-up in a semi-arid Africansavanna separating tree and grass responses to environmentalcues[J].Journal of Vegetation Science,2007,18(4):583-594.
[9] Hermance J F.Stabilizing high-order,non-classical harmonicanalysis of NDVI data for average annual models by dampingmodel roughness[J].International Journal of Remote Sensing,2007,28(12):2801-2819.
[10] Fisher J I,Mustard J F.Cross-scalar satellite phenology fromground,Landsat,and MODIS data[J].Remote Sensing of Envi-ronment,2007,109(3):261-273.
[11] Schaber J,Badeck F W.Plant phenology in Germany over the20th century[J].Regional Environmental Change,2005,5(1):37-46.
[12] Ahas R,Aasa A,Menzel A,et al.Changes in European springphenology[J].International Journal of Climatology,2002,22(14):1727-1738.
[13] Reed B.Trend Analysis of Time~series phenology of northAmerica derived from satellite data[J].GIScience&RemoteSensing,2006,43(1):24-38.
[14] Karlsen S,Hogda K,Wielgolaski F,et al.Growing-season tren-ds in Fennoscandia 1982-2006,determined from satellite andphenology data[J].Climate Research,2009,39(3):275-286.
[15] 宫攀,陈仲新.基于MODIS数据的东北地区植被物候参数提取[J].土壤通报,2009,40(2):213~217.
[16] 于信芳,庄大方.基于MODIS NDVI数据的东北森林物候期监测[J].资源科学,2006,28(4):111~117.
[17] Per J,Eklundh L.Seasonality extraction by function fitting totime-series of satellite sensor data[J].IEEE Transactions ongeoscience and remote sensing,2002,40(8):1824-1832.
[18] 李惠敏,刘洪斌,武伟.近10年重庆市归一化植被指数变化分析[J].地理科学,2010,30(1):119~123.
[19] 侯西勇,应兰兰,高猛,等.1998~2008年中国东部沿海植被覆盖变化特征[J].地理科学,2010,30(5):735~741.
[20] Fisher J I,Mustard J F,Vadeboncoeur M A.Green leaf phenolo-gy at Landsat resolution:Scaling from the field to the satellite[J].Remote Sensing of Environment,2006,100(2):265-279.
[21] Stow D,Daeschner S,Hope A,et al.Variability of the seasonallyintegrated normalized difference vegetation index across thenorth slope of Alaska in the 1990s[J].International Journal ofRemote Sensing,2003,24(5):1111-1117.1247
文章导航

/