2005~2007年共6次采集了三江平原主要河流和水田集中分布区的地下水水样,分析可溶性铁含量。结果显示:地下水中Fe2+含量普遍高于Fe3+;可溶性铁含量变化于0.03~21.00 mg/L,平均为5.48 mg/L,最大值出现在夏汛期。江河水中可溶性铁的主要形态是Fe3+;可溶性铁含量的变化范围是0.04~2.05 mg/L,平均为0.42 mg/L,峰值也出现在夏汛期;沼泽性河流中可溶性铁含量高于非沼泽性河流。松花江可溶性铁输出通量为240×105kg/a,黑龙江为200×105kg/a,乌苏里江为70×105kg/a。
River and groundwater samples were collected from Sanjiang Plain in Northeast China in middle Heilong River watershed from 2005 to 2007 to study the temporal and spatial distribution of water-soluble ionic iron(WSIFe,including Fe2+ and Fe3+).It can be concluded that the concentration of Fe2+ is generally higher than Fe3+ in the groundwater.The concentration of WSIFe ranged from 0.03 to 21.00 mg/L,with an average of 5.48 mg/L,and fluctuated with the groundwater level.In the river water samples,WSIFe presented in form of Fe3+,and the concentration of WSIFe ranged from 0.04 to 2.05 mg/L,with an average of 0.42 mg/L.The content reached a peak in the flood season.The concentration of WSIFe in the rivers derived from marsh is much higher compared to the river derived from forest areas.The WSIFe flux of upper-middle Heilong River,lower Songhua River and lower Wussuri River was 200?105 kg/yr,240?105 kg/yr and 70?105 kg/yr,respectively.
[1] Martin J H.Glacial-interglacial CO2 change:the iron hypothesis[J].Paleooeanography,1990,5:1-13.
[2] Coale K H,Johnson K S,Fitzwater,et al.A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean[J].Nature,1996,383:495-501.
[3] Boyd P W,Watson A J,Law C S,et al.A mesoscale phytoplankton bloom in the polar Southern Oecan stimulated by iron fertilization[J].Nature,2000,407:695-702.
[4] Bishop J K B,Davis R E,Sherman J T.Robotic observations of dust-storm enhancement of carbon biomass in the North Pacific[J].Science,2002,298:817-821.
[5] 韩永翔,宋连春,赵天良,等.北太平洋地区沙尘沉降与海洋生物兴衰的关系[J].中国环境科学,2006,26(2):157~160.
[6] 翁焕新,孙向卫,陈静峰,等.铁和磷对原甲藻和隐藻暴发性增殖的限制与协同影响[J].自然科学进展,2005,16(6):705~711.
[7] 刘兴土.松嫩-三江平原湿地资源及其可持续利用[J].地理科学,1997,17(增刊):451~460.
[8] 刘兴土,马学慧.三江平原自然环境变化与生态保育[M].北京:科学出版社,2002.10~13,171.
[9] 汪爱华,张树清,何艳芬.RS和GIS支持下的三江平原沼泽湿地动态变化研究[J].地理科学,2002,22(5):636~640.
[10] 李颖,张养贞,张树文.三江平原沼泽湿地景观格局变化及其生态效应[J].地理科学,2002,22(6):677~682.
[11] 刘兴土,马学慧.三江平原大面积开荒对自然环境影响及区域生态环境保护[J].地理科学,2000,20(1):14~19.
[12] 王德宣,吕宪国,丁维新,等.三江平原沼泽湿地与稻田CH4排放对比研究[J].地理科学,2002,22(4):500~503.
[13] 闫敏华,邓伟,陈泮勤.三江平原气候突变分析[J].地理科学,2003,23(6):661~668.
[14] 宋长春,王毅勇,王跃思,等.人类活动影响下淡水沼泽湿地温室气体排放变化[J].地理科学,2006,26(1):82~86.
[15] 张金波,宋长春,杨文燕.沼泽湿地垦殖对土壤碳动态的影响[J].地理科学,2006,26(3):340~344.
[16] 尹喜霖,柏钰春,王勇,等.三江平原地下水资源潜力评价[J].水文地质工程地质,2004,31(6):5~10.
[17] 王洁青,陈文闯,张金锐.地下水中亚铁含量的快速测定方法[J].化学世界,1997,(10):546~547.
[18] Stookey L L.Ferrozine-a new spectrophotometric reagent for iron[J].Anal.Chem.,1970,42:779-781.
[19] 王勇,柏钰春,尹喜霖,等.三江平原生态地质环境分区研究[J].水文地质工程地质,2004,31(6):11~18.
[20] 李清林,战连生.齐齐哈尔市地下水铁,锰含量及分布[J].环境与健康杂志,1991,8(2):79.
[21] 曾昭华.长江中下游地区地下水中铁锰元素的形成及其分布规律[J].长江流域资源与环境,1994,3(4):326~329.
[22] 贾国东,钟佐燊.含铁地下水成因、危害及防治[J].水文地质工程地质,2000,27(1):7~10.
[23] Taylor S R.Abundance of chemical elements in the continental crust:a new table,Cosmochim[J].Acta,1964,28:1273-1285.
[24] Maeve C L,Kenneth W B.Importance of vertical mixing for additional sources of nitrate and iron to surface waters of the Columbia River plume:Implications for biology[J].Marine Chemistry,2006,98 (2-4),260-273.
[25] Powell R T,Finelli A W.Importance of organic Fe complexing ligands in the Mississippi River plume[J].Estuarine Coastal Shelf Science,2003,58:757-763.
[26] Aucour A M,Tao F X,Moreira T P,et al.The Amazon River:behavior of metals (Fe、Al、Mn) and dissolved organic matter in the initial mixing at the Rio Negro/Solim(o)es confluence[J].Chemical Geology,2003,197(1-4):271-285.
[27] Neal C,Robson A J.Summary of river water quality data collected within the Land-Ocean Interaction Study:core data for eastern UK rivers draining to the North Sea[J].The Science of the Toysl Environment,2000,251-252:585-665.
[28] 朱颜明,何岩,佘中盛,等.长江流域水体环境背景值研究图集[M].北京:科学出版社,1998.19~20.
[29] 王强,魏世强.胡敏酸吸附解吸Fe3+反应特征研究[J].土壤学报,2006,43(3):415~419.
[30] 刘彦军,王丽,杨春生.黑龙江与乌苏里江入境水量概算[J].黑龙江水专学报,2003,30(2):43~45.