论文

三江平原水环境中可溶性铁的分布特征研究

展开
  • 1. 中国科学院东北地理与农业生态研究所湿地生态与环境重点实验室, 吉林, 长春, 130012;
    2. 中国科学院大气物理研究所, 北京, 100029;
    3. 东京农工大学农学部, 日本, 东京, 183-8509;
    4. 中国科学院研究生院, 北京, 100049

收稿日期: 2006-11-17

  修回日期: 2007-04-04

  网络出版日期: 2007-11-20

基金资助

国家自然科学基金(40771035);中国科学院东北地理与农业生态研究所学科前沿领域项目(KZCX3-SW-NA3-15);中日合作项目(三江平原生物地球化学作用研究)资助

Distribution of Water-soluble Iron in Water Environment of Sanjiang Plain

Expand
  • 1. Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130012;
    2. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;
    3. Department of Agriculture, Tokyo University of Agriculture and Technology, Tokyo Japan 183-8509;
    4. Graduate University of the Chinese Academy of Sciences, Beijing 100049

Received date: 2006-11-17

  Revised date: 2007-04-04

  Online published: 2007-11-20

摘要

2005~2007年共6次采集了三江平原主要河流和水田集中分布区的地下水水样,分析可溶性铁含量。结果显示:地下水中Fe2+含量普遍高于Fe3+;可溶性铁含量变化于0.03~21.00 mg/L,平均为5.48 mg/L,最大值出现在夏汛期。江河水中可溶性铁的主要形态是Fe3+;可溶性铁含量的变化范围是0.04~2.05 mg/L,平均为0.42 mg/L,峰值也出现在夏汛期;沼泽性河流中可溶性铁含量高于非沼泽性河流。松花江可溶性铁输出通量为240×105kg/a,黑龙江为200×105kg/a,乌苏里江为70×105kg/a。

本文引用格式

潘月鹏, 阎百兴, 路永正, 杨宗兴, 张凤英 . 三江平原水环境中可溶性铁的分布特征研究[J]. 地理科学, 2007 , 27(6) : 820 -824 . DOI: 10.13249/j.cnki.sgs.2007.06.820

Abstract

River and groundwater samples were collected from Sanjiang Plain in Northeast China in middle Heilong River watershed from 2005 to 2007 to study the temporal and spatial distribution of water-soluble ionic iron(WSIFe,including Fe2+ and Fe3+).It can be concluded that the concentration of Fe2+ is generally higher than Fe3+ in the groundwater.The concentration of WSIFe ranged from 0.03 to 21.00 mg/L,with an average of 5.48 mg/L,and fluctuated with the groundwater level.In the river water samples,WSIFe presented in form of Fe3+,and the concentration of WSIFe ranged from 0.04 to 2.05 mg/L,with an average of 0.42 mg/L.The content reached a peak in the flood season.The concentration of WSIFe in the rivers derived from marsh is much higher compared to the river derived from forest areas.The WSIFe flux of upper-middle Heilong River,lower Songhua River and lower Wussuri River was 200?105 kg/yr,240?105 kg/yr and 70?105 kg/yr,respectively.

参考文献

[1] Martin J H.Glacial-interglacial CO2 change:the iron hypothesis[J].Paleooeanography,1990,5:1-13.
[2] Coale K H,Johnson K S,Fitzwater,et al.A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean[J].Nature,1996,383:495-501.
[3] Boyd P W,Watson A J,Law C S,et al.A mesoscale phytoplankton bloom in the polar Southern Oecan stimulated by iron fertilization[J].Nature,2000,407:695-702.
[4] Bishop J K B,Davis R E,Sherman J T.Robotic observations of dust-storm enhancement of carbon biomass in the North Pacific[J].Science,2002,298:817-821.
[5] 韩永翔,宋连春,赵天良,等.北太平洋地区沙尘沉降与海洋生物兴衰的关系[J].中国环境科学,2006,26(2):157~160.
[6] 翁焕新,孙向卫,陈静峰,等.铁和磷对原甲藻和隐藻暴发性增殖的限制与协同影响[J].自然科学进展,2005,16(6):705~711.
[7] 刘兴土.松嫩-三江平原湿地资源及其可持续利用[J].地理科学,1997,17(增刊):451~460.
[8] 刘兴土,马学慧.三江平原自然环境变化与生态保育[M].北京:科学出版社,2002.10~13,171.
[9] 汪爱华,张树清,何艳芬.RS和GIS支持下的三江平原沼泽湿地动态变化研究[J].地理科学,2002,22(5):636~640.
[10] 李颖,张养贞,张树文.三江平原沼泽湿地景观格局变化及其生态效应[J].地理科学,2002,22(6):677~682.
[11] 刘兴土,马学慧.三江平原大面积开荒对自然环境影响及区域生态环境保护[J].地理科学,2000,20(1):14~19.
[12] 王德宣,吕宪国,丁维新,等.三江平原沼泽湿地与稻田CH4排放对比研究[J].地理科学,2002,22(4):500~503.
[13] 闫敏华,邓伟,陈泮勤.三江平原气候突变分析[J].地理科学,2003,23(6):661~668.
[14] 宋长春,王毅勇,王跃思,等.人类活动影响下淡水沼泽湿地温室气体排放变化[J].地理科学,2006,26(1):82~86.
[15] 张金波,宋长春,杨文燕.沼泽湿地垦殖对土壤碳动态的影响[J].地理科学,2006,26(3):340~344.
[16] 尹喜霖,柏钰春,王勇,等.三江平原地下水资源潜力评价[J].水文地质工程地质,2004,31(6):5~10.
[17] 王洁青,陈文闯,张金锐.地下水中亚铁含量的快速测定方法[J].化学世界,1997,(10):546~547.
[18] Stookey L L.Ferrozine-a new spectrophotometric reagent for iron[J].Anal.Chem.,1970,42:779-781.
[19] 王勇,柏钰春,尹喜霖,等.三江平原生态地质环境分区研究[J].水文地质工程地质,2004,31(6):11~18.
[20] 李清林,战连生.齐齐哈尔市地下水铁,锰含量及分布[J].环境与健康杂志,1991,8(2):79.
[21] 曾昭华.长江中下游地区地下水中铁锰元素的形成及其分布规律[J].长江流域资源与环境,1994,3(4):326~329.
[22] 贾国东,钟佐燊.含铁地下水成因、危害及防治[J].水文地质工程地质,2000,27(1):7~10.
[23] Taylor S R.Abundance of chemical elements in the continental crust:a new table,Cosmochim[J].Acta,1964,28:1273-1285.
[24] Maeve C L,Kenneth W B.Importance of vertical mixing for additional sources of nitrate and iron to surface waters of the Columbia River plume:Implications for biology[J].Marine Chemistry,2006,98 (2-4),260-273.
[25] Powell R T,Finelli A W.Importance of organic Fe complexing ligands in the Mississippi River plume[J].Estuarine Coastal Shelf Science,2003,58:757-763.
[26] Aucour A M,Tao F X,Moreira T P,et al.The Amazon River:behavior of metals (Fe、Al、Mn) and dissolved organic matter in the initial mixing at the Rio Negro/Solim(o)es confluence[J].Chemical Geology,2003,197(1-4):271-285.
[27] Neal C,Robson A J.Summary of river water quality data collected within the Land-Ocean Interaction Study:core data for eastern UK rivers draining to the North Sea[J].The Science of the Toysl Environment,2000,251-252:585-665.
[28] 朱颜明,何岩,佘中盛,等.长江流域水体环境背景值研究图集[M].北京:科学出版社,1998.19~20.
[29] 王强,魏世强.胡敏酸吸附解吸Fe3+反应特征研究[J].土壤学报,2006,43(3):415~419.
[30] 刘彦军,王丽,杨春生.黑龙江与乌苏里江入境水量概算[J].黑龙江水专学报,2003,30(2):43~45.
文章导航

/