运用水化学和同位素示踪的原理追溯地热水的水岩相互作用和起源,得出武山和天水地热水为pH较高(7.94~9.06)的低TDS(226~255 mg/L)HCO3型水,通渭和清水地热水为pH较低(7.1~8.07)的较高TDS(915~1 793 mg/L)SO4型水,地热水的水化学特征主要受不同的围岩及与围岩相互作用的程度所控制。地热水的δD和δ18O值说明地热水起源于大气降水,且未受水-岩同位素交换明显影响。综合应用各种地热温标,估算地热水的热储温度为70~111℃,属于中低温地热资源。对年均降雨量约500 mm的天水及其南北地区,应采取采、停交替的地热水利用方式。
A geochemical study of geothermal water has been carried out in the Tianshui and its northern-southern area. Geothermal water of Wushan and Tianshui is bicarbonate water of low salinity characterized by pH in 7.94-9.06 and low total dissolved solids (TDS) (226-255 mg/L), which were probably formed by water-rock interaction between meteoric rain, biotite plagioclase gneiss rock and carbonate sediment in reservior. While geothermal water of Tongwei and Qingshui is sulfate water with characteristics of pH in 7.1-8.07 and high total dissolved solids (TDS) (915-1 793 mg/L), which may arised from water-rock interaction between meteoric rain, variscan granite and sinian amphogneiss. The isotopic data show that the origin of thermal water is meteoric water and not severely affected by water-rock isotope exchange. Assessments of various chemical geothermometer applied on the geothermal waters suggested the probable existence of a deep geothermal reservoir of middle-low enthalpy (70-111癈) in the Tianshui and its northern- southern area. The sustainable utilization of the thermal water will be maintained if the total withdrawal rate is relatively small, and an alternative pumping and non-pumping pattern is used in Tianshui and its northern-southern area with mean yearly rainfall of near 500 mm.
[1] Gemici Ü,Tarcan G,olak M,et al.Hydrogeochemical and hydrogeological investigations of thermal waters in the Emet area (Kütahya, Turkey)[J].Applied Geochemistry,2004,19:105-117.
[2] Cruz V J,Frana Z.Hydrogeochemistry of thermal and mineral water springs of the Azores archipelago (Portugal)[J].Journal of Volcanology and Geothermal Research,2006,151:382-398.
[3] Ahmad M,Akram W,Hussain D S,et al.Origin and subsurface history of geothermal water of Murtazabad area, Pakistan—an isotopic evidence[J].Applied radiation and isotope,2001,55:731-736.
[4] Papp C D,Niţoi E.Isotopic composition and origin of mineral and geothermal waters from Tuţnad Băi Spa, Harghita Mountains, Romania[J].Journal of Geochemical Exploration,2006,89:314-317.
[5] Ahmad M,Akram W,Ahmad N,et al.Assessment of reservoir temperatures of thermal springs of the northern areas of Pakistan by chemical and isotope geothermometry[J].Geothermics,2002,31:613-631.
[6] 陈彦文,李生永.甘肃省东部地下热水的分布特征与勘查开发前景分析[J].地下水,2007,29(4):43~44.
[7] 张万军.武山温泉地下热水成因浅析[J].甘肃冶金,2009,31(4):48~49.
[8] 张守训,李百祥.天水及其南北地区温泉分布的地质-地球物理特征[J].西北地震学报,2006,28(3):252~257.
[9] Stumm W,Morgan J J.Aquatic chemistry:chemical equilibria and rates in natural waters,3rd ed[M].New York: John Wiley and Sons,1996.
[10] 赵全升,冯 娟,安乐生.德州市深层地下水水质演化研究[J].地理科学,2009,29(5):766~772.
[11] 李丽娟,李海滨,王 娟.澜沧江水文与水环境特征及其时空分异[J].地理科学,2002,22(1):49~56.
[12] Pastorelli S,Marini L,Hunziker J C.Chemistry,isotope values(δD,δ18O,δ34SSO4)and temperatures of the water inflows in two Gotthard tunnels,Swiss Alps[J].Applied Geochemistry,2001,16:633-649.
[13] 王君波,朱立平,鞠建廷,等.西藏纳木错东部湖水及入湖河流水化学特征初步研究[J].地理科学,2009,29(2):288~293.
[14] 王 蔚,张景荣,胡桂兴,等.湘西北地区现代温泉地球化学[J].中国科学(B辑),1995,25(4):427~433.
[15] Craig H.Isotopic variations in meteoric waters[J].Science,1961,l33:1702-1703.
[16] 高志发.西北地区大气降水、地表水及地下水同位素组成特征探讨[J].甘肃地质学报,1993,2(2):94~101.
[17] 章新平,田立德,刘晶淼,等.沿三条水汽输送路径的江水中18O变化特征[J].地理科学,2005,25 (2):190~196.
[18] 上官志冠,都吉夔,臧 伟,等.郯庐断裂及胶辽断块区现代地热流体地球化学[J].中国科学(D辑),1998,(1):23~29.
[19] Motyka R J,Nye G J,Turner D L,et al.The Geyser Bight geothermal area, UmnakIsland, Alaska[J].Geothermics,1993,22(4):301-327.
[20] Marini L,Bonaria V,Guidi M,et al.Fluid geochemistry of the Acqui Terme-Visone geothermal area(Piemonte,Italy) [J].Applied Geochemistry,2000,15:917-935.
[21] Gherardi F,Panichi C,Yock A,et al.Geochemistry of the surface and deep fluids of the Miravalles volcano geothermal system(Costa Rica)[J].Geothermics,2002,31:91-128.
[22] Koh Y,Choi B,Yun S,et al.Origin and evolution of two contrasting thermal groundwaters (CO2-rich and alkaline) in the Jungwon area,South Korea:Hydrochemical and isotopic evidence[J].Journal of Volcanology and Geothermal Research,2008,178:777-786.
[23] 汪集旸,熊亮萍,庞忠和.中低温对流型地热系统[M].北京:科学出版社,1993.
[24] Arnorsson S.Application of the silica geothermometer in low temperature hydrothermal areas in Iceland[J].American Journal of Science,1975,275:763-783.
[25] Giggenbach W F.Geothermal solute equilibria derivation of Na-K-Mg-Ca geoindicators[J].Geochim Cosmochim Acta,1988,52:2749-2765.
[26] Gemici Ü,Filiz Ş.Hydrochemistry of the Çeşme geothermal area in western Turkey[J].Journal of Volcanology and Geothermal Research,2001,110:171-187.
[27] Sepúlveda F,Dorsch K,Lahsen A,et al.Chemical and isotopic composition of geothermal discharges from the Puyehue-Cordon Caulle area (40.5°S),Southern Chile[J].Geothermics,2004,33:655-673.
[28] Chiodini G,Cioni R,Guidi M,et al.Chemical geothermometry and geobarometry in hydrothermal aqueous solutions:a theoretical investigation based on a mineral-solution equilibrium model[J].Geochim. Cosmoch Acta,1991,55:2709-2727.
[29] 王腊春,史运良.西南喀斯特山区三水转化与水资源过程及合理利用[J].地理科学,2006,26(2) :173~178.
[30] 邓 伟,翟金良,闫敏华.水空间管理与水资源的可持续性[J].地理科学,2003,23(4):385~390.
[31] 周 训,周海燕,方 斌,等.浅析开采条件下地下热水资源的演变[J].地质通报,2006,25 (4): 482~486.