论文

地磁Ap指数与太阳黑子数的交叉小波分析及R/S分析

展开
  • 西北师范大学地理与环境科学学院, 甘肃 兰州 730070

收稿日期: 2010-10-07

  修回日期: 2010-12-27

  网络出版日期: 2011-06-20

基金资助

国家自然科学基金资助项目(40961038)、公益性行业(气象)科研专项(GYHY200806021-07)、中国科学院知识创新工程重要方向项目(KZCX2-YW-Q10-4)资助。

Cross Wavelet Analysis and R/S Analysis of Relationship Between Geomagnetic Ap Index and Sunspot Number

Expand
  • Geographic and Environmental Sciences Department of Northwest Normal University, Lanzhou, Gansu 730070, China

Received date: 2010-10-07

  Revised date: 2010-12-27

  Online published: 2011-06-20

摘要

利用1932~2009年间的地磁Ap指数和太阳黑子数资料,用交叉小波方法和R/S方法分析了地磁Ap指数和太阳黑子数的关系。分析结果表明,① 地磁Ap指数和太阳黑子数在高频段上显著带的形状有一定程度的相似性, 具有显著和稳定的8.02~11.35 a的振荡周期;在低频部分, 地磁Ap指数和太阳黑子数4~6月的周期变化不连续,仅在部分年份通过了95%的红噪声检验。② 地磁Ap指数和太阳黑子数在8.02~11.35 a的频段上具有显著的共振周期, 且在此频段上地磁Ap指数落后太阳黑子数1.5 a左右稳定的相位变化。地磁Ap指数和太阳黑子数在低频部分存在4~6月共振周期, 但二者的位相关系不稳定。③ 地磁Ap指数和太阳黑子数时间序列的Hurst指数分别为0.79和0.81,表明地磁Ap指数和太阳黑子数都是持续的时间序列,且未来的变化将持续过去的变化趋势,具有长期记忆性和混沌特征。

本文引用格式

王亚敏, 张勃, 郭玲霞, 戴声佩, 王兴梅 . 地磁Ap指数与太阳黑子数的交叉小波分析及R/S分析[J]. 地理科学, 2011 , 31(6) : 747 -752 . DOI: 10.13249/j.cnki.sgs.2011.06.747

Abstract

Two of the most widely used indices in geophysical research are the sunspot number as a measure of solar activity and the index Ap representing geomagnetic activity in the sub-auroral region. The sunspot number is a significant index of the solar activity because of its availability and reliability. Studies in solar terrestrial relationships have consistently shown the close and occasionally elusive link between the evolution of activity of the Sun and geomagnetic manifestations on the surface and in the magnetosphere. We use R/S assessing statistical singnificance and wavelet methods to assess statistical significance and confidence intervals of cross-wavelet phase and wavelet coherence. The Continuous Wavelet Transform is a common tool for analyzing localized intermittent oscillations in a time series. It is very often desirable to examine two time series together that may be expected to be linked in some ways. In particular, to examine whether regions in time-frequency space with large common power have a consistent phase relationship, causality between the time series is suggestive. Many geophysical time series are not normally distributed and we employed the Continuous Wavelet Transform. From two Continuous Wavelet Transforms we constructed the Cross Wavelet Transform which will expose their common power and relative phase in time-frequency space. We will further define a measure of Wavelet Coherence between two Continuous Wavelet Transform, which can find a significant coherence even though the common power is low, and show how confidence levels against red noise backgrounds are calculated. The rescaled range analysis (R/S) is proposed as a method to detect the correlations in pseudorandom number generators used in Monte Carlo simulations. In an extensive test, it is demonstrated that the R/S analysis provides a very sensitive method to reveal the hidden long-run and short-run correlations. Several widely used pseudorandom number generators are subjected to this test. In many generators, correlations are detected and quantified. In this paper, we used data of the Geomagnetic Ap index and the sunspot number from 1932 to 2009 to analyze the relationship between the Geomagnetic Ap index and the sunspot number by cross-wavelet method and the rescaled range analysis method. The results show that, 1) The Geomagnetic Ap index and the sunspot number have the similarity shape in the significant degree band with high frequency, and have a significant and steady oscillation period from 8.02 to 11.35 a; in the low frequency band, Geomagnetic Ap index and sunspot number have an uncontinuous oscillation period from 2 to 6 months, which is only a part of the year within the 95% of the red noise test. 2) There is significant in-phase resonance oscillation between the Geomagnetic Ap index and sunspot number in 8.02–11.35 a, in which the variation of the Geomagnetic Ap index occurs about 1.5 a after that of the sunspot number, and their phase relationship is steady. The Geomagnetic Ap index and the sunspot number also have relatively intermittent resonance periodicity from 4 to 6 months in the low frequency, but their phase relationship was not steady. 3) The Hurst index of the Geomagnetic Ap index and the sunspot number were 0.7923 and 0.8141, respectively. It indicated that the Geomagnetic Ap index and the sunspot number were continuous time series, and there existed a long persistence and chaoticity in the Geomagnetic Ap index and the sunspot number.

参考文献

[1] 黄朝军,徐 彤,吴 健,等.利用EMD方法提取地磁AP指数周期分量[J].地球物理学进展,2009,24(6):1968~1974.
[2] 苗 娟,田建华.太阳黑子数及AP指数周期变化特征的小波分析[J].空间科学学报,2004,24(1):28~34.
[3] Gonzalez W D.Periodic variation in the geomagnetic activity:A study based on Ap index[J].J.Geophys.Res.,1993,98(A6):9215-9231.
[4] Gao M.A comparison of solar and geomagnetic activities from the 13th to 21th solar cycles[M]//Kamide Y,Slavin J A ed.Solar Wind Magnetosphere Coupling. Pub.Tokyo:Terra Scientific Publishing Company,1986:149-160.
[5] Prabhakaran N S R,Radhika V N,Rwvathy K,et al.Wavelet analysis of solar, solar wind and geomagnetic parameters[J]. J.Solar phys,2002,208(2):359-373.
[6] Prestes A,Rigozo N R,Echer E,et al.Spectral analysis of sunspot number and geomagnetic indices(1986-2001)[J].J. Atmos.solar-Terr.Phys.,2006,68(2):182-190.
[7] 康国发,白春华,高国明.地磁场长期变化和日长十年尺度变化的周期特征[J].地球物理学报,2008,51(2):369~375.
[8] 王家龙,苗 娟,刘四清,等.第24太阳周太阳黑子数平滑月均值预报[J].中国科学(G辑.物理学、力学、天文学),2008,38(8):1097~1105.
[9] 韩延本,韩永刚.太阳黑子相对数变化的小波分析[J].科学通报,2001,46(24):2031~2035.
[10] 郭汉伟,乐贵明.太阳黑子群周期的小波分析[J].自然科学进展,2004,14(5):597~600.
[11] 李可军,苏同卫,梁红飞.现代黑子观测的太阳黑子活动的周期性[J].科学通报,2004,49(24):2511~2516.
[12] 杨若文,曹 杰,黄 玮,等.太阳常数与太阳黑子数关系的交叉小波分析[J].科学通报,2009,54(7):871~875.
[13] Romanov Y S,Zgonyaiko N S.The periodicity of solar activity cycles[J].Solar Phys.,1994,152(1):31-34.
[14] Ochadlick A R, Kritikos H N,Giegengack R.Variations in the period of the sunspot cycle[J].Geophys.Res.Lett., 1993,20(14):1471-1474.
[15] Feng B,Ke X Z,Ding H L.Wavelet analysis of sunspot numbers[J].Chin.Astron.Astrophys.,1998,22 (1):83-91.
[16] Lawemce J K,Cadavid A C,Ruzmaikin A A.Turbulent and chaotic dynamics underlying solar magnetic variability[J].The Ast rophysical Journal,1995,455(12):366-375.
[17] 顾圣士,王志谦,程极泰.太阳黑子数时间序列的分形研究及预测[J].应用数学和力学,1999,20 (1):79~84.
[18] 张 勤.太阳黑子相对数的分维研究[J].天文学报,1994,35(1):27~32.
[19] 汤龙坤.太阳黑子数时间序列的R/S分析[J].华侨大学学报(自然科学版),2008,29(4):627~629.
[20] 李红军,江志红,刘新春,等.阿克苏河径流量变化与北大西洋涛动的关系[J].地理学报,2008,63(5):491~500.
[21] 魏凤英.现代气候统计诊断与预测技术[M].北京:气象出版社,1999:18~36.
[22] 林振山,邓子旺.子波气候诊断技术的研究[M].北京:气象出版社,1999:9~37.
[23] 吴洪宝,吴 蕾.气候变率诊断和预测方法[M].北京:气象出版社, 2005:181~192.
[24] Torrence C,Compo G P.A practical guide to wavelet analysis. Bull Am Meteor Soc,1998,79(1): 61-78.
[25] Grinsted A,Moore J C,Jevrejeva S.Application of the cross wavelet transform and wavelet coherence to geophysical time series[J].Nonlin Proc Geophys,2004,11(5/6): 561-566.
[26] 欧素英, 陈子燊.小波变换在相对海平面变化研究中的应用[J].地理科学,2004,24(3):358~364.
[27] 刘会玉,林振山,张明阳.建国以来中国洪涝灾害成灾面积变化的小波分析[J].地理科学,2005,25(1):43~48.
[28] 王 钧,蒙吉军.黑河流域近60年来径流量变化及影响因素[J].地理科学,2008,28(1):83~88.
[29] 刘 东,付 强.基于小波变换的三江平原低湿地井灌区年降水序列变化趋势分析[J].地理科学,2008,28(3):380~384.
[30] 孙卫国,程炳岩,李 荣.黄河源区径流量与区域气候变化的多时间尺度相关[J].地理学报,2009,64(1):491~500.
[31] 袁林旺,俞肇元,谢志仁,等.1965~2005年西北太平洋边缘海区海面变化记录的ENSO信号及其时空分异特征[J].中国科学(D辑:地球科学),2009,39(5):664~676.
[32] Rangarajan G,Dhananjay A S.Fractal dimensional analysis of Indian climatic dynamics[J].Chaos,Solitons and Fractals,2004,19(2):285-291.
[33] 江田汉,邓莲堂.Hurst指数估计中存在的若干问题[J].地理科学,2004,24(2):177~182.
[34] 冯新灵,罗隆诚,邱丽丽,等.青藏高原至中国东部年雨日变化趋势的分析研究[J].地理研究,2007,26(4):836~843.
[35] 冯新灵,冯自立,罗隆诚,等.青藏高原冷暖气候变化趋势的R /S分析及Hurst指数试验研究[J].干旱区地理,2008,31(2):175~181.
[36] 张 斌,史 凯,刘春琼,等.元谋干热河谷近50年分季节降水变化的DFA分析[J].地理科学,2009,29(4):562~566.
[37] Rehman S.Study of Saudi Arabian climatic conditions using Hurst exponent and climatic predictability index[J]. Chaos,Solitons and Fractals,2007,39(2):499-509.
文章导航

/