论文

基于GIS的澜沧江下游区滑坡灾害危险性分析

展开
  • 1. 清华大学水利系河流海洋研究所, 北京, 100084;
    2. 第二炮兵装备研究院第一研究所, 北京, 100085

收稿日期: 2005-10-25

  修回日期: 2006-02-20

  网络出版日期: 2007-05-20

基金资助

云南省与清华大学合作项目“澜沧江区域综合开发协调管理的信息系统与决策支持系统建设”资助

Landslide Risk Assessment in the Lower Lancang River Watershed Using GIS Approach

Expand
  • 1. Institute of River and Ocean, Department of Hydrology, Tsinghua University, Beijing 100084;
    2. First Institute, Second Artillery Academy of Equipment, Beijing 100085

Received date: 2005-10-25

  Revised date: 2006-02-20

  Online published: 2007-05-20

摘要

澜沧江流域是中国西南地区滑坡灾害较为严重的地区。对澜沧江下游区滑坡灾害及其控制因素分析,建立基于G IS的滑坡灾害危险性评价模型,实现澜沧江下游区滑坡危险性区划,为该区滑坡灾害防治和生态环境保护等提供重要决策依据。

本文引用格式

闫满存, 王光谦 . 基于GIS的澜沧江下游区滑坡灾害危险性分析[J]. 地理科学, 2007 , 27(3) : 365 -370 . DOI: 10.13249/j.cnki.sgs.2007.03.365

Abstract

Landslide hazards are an inherent but dangerous and costly element of mountainous environment in the lower Lancang River watershed.Conventional hazard map provide useful inventories of hazardous sites but provide little insight into the potential area of the hazards.In the paper,based on the spatial analysis of driving and triggering factors promoting the occurrence and development of landslides in the Lancang River watershed a correlation of the occurrence of landslides with slope gradient,vegetation cover and precipitation presented for providing multivariate statistical data available for assessing risk of the landslide in the area.Using ArcGIS grid module the data including contour,vegetation cover and precipitation were transformed into TIN data and DEM and further into raster gradient,vegetation and precipitation were with a raster of 100 m ?100 m.The classification of gradient,vegetation and precipitation were with five ranks,in agreement with five risk ranks of landslides of highest,high,moderate,less and none are implemented on ArcGIS platform.A risk map with the potential zones of the landslide with different risk ranks in the lower Lancang River watershed was shown.It can be sure that the highest and high risk zones are compatible to the high occurrence of landslide hazards,indicating that the index selected and methods are rational and credible.The result will be base for controlling the landslide disasters and promoting sustainable eco-environment development in the area.

参考文献

[1] 李丽娟,李海滨,王娟.澜沧江水文与水环境特征及其时空分异[J].地理科学,2002,22(1):49~56.
[2] 唐川,朱静.澜沧江中下游滑坡泥石流分布规律与危险区划[J].地理学报,1999,54(增刊):84~92.
[3] 闫满存,王光谦,刘家宏.GIS支持的澜沧江下游区泥石流灾害危险性评价[J].地理科学,2001,21(4):334~339.
[4] Guzzetti F,Carrara A,Cardinali M,et al,Landslide evaluation:A review of current techniques and their application on a multi-scale study,central Italy[J].Geomorphology,1999,31(1):181-216.
[5] 唐川,朱大奎.基于GIS技术的泥石流风险评价研究[J].地理科学,2002,22(3):300~304.
[6] 刘家宏,王光谦.基于遥感图象的泥石流地面活动程度评价[J].地理科学,2003,23(4):455~460.
[7] Dikau R,Cavallin A,Jager S.Databases and GIS for landslideresearch in Europe[J].Geomorphology,1996,15 (3-4):227-239.
[8] 王亚强,王兰民,张小曳.GIS支持下的黄土高原地震滑坡区划研究[J].地理科学,2004,24(2):170~176.
[9] Mantovani F R,Soeters C J,Van W.Remote sensing techniques for landslide studies and hazard zonation in Europe[J].Geomorphology,1996,15:213-225.
[10] Gupta R P,Joshi B.Landslides hazard zoning using the GIS approach:A case study from the Ramganga Catchment Himalayas[J].Engineering Geology,1990,28(1-2):119-131.
[11] Dhakal A S,Amada A,Anlya M.landslide hazard mapping and its evaluation using GIS:An investigation of sampling schemes for a grid cell based quantitative method[J].Photogrammetric Engineering & Remote Sensing,1999,66(8):981-989.
[12] Mejia-Navarro M,Wohl E E,Oaks S D.Geological hazards,vulnerability,and risk assessment using GIS;model for Glenwod Springs,Colorado[J].Geomorphology,1994,10(1):331-354.
[13] Van Westen C J,Rengers N,Terlien M T J,et al.Prediction of the occurrence of Slope instability phenomena through GIS-based hazard zonation[J].Geologische Rundschau,1997,86(4):1-14.
[14] Terlien M T J,C J Van Westen,W J Van Asch.Deterministic modeling in GIS-based landslide hazard assessment[A].A Carraa,F Guzzetti(editors).Geographic Information Systems in Assessing Natural Hazards[C].Dordrecht:Kluwer Academic Publishers,1995.57-78.
[15] 文宝萍.滑坡预测预报研究现状与发展趋势[J].地学前缘,1996,3(1~2):86~92.
[16] 殷坤龙,晏同珍.滑坡预报及相关模型[J].岩石力学与工程学报,1996,15(1):1~8.
[17] Pike R J.Quantifying landslide -terrain type from digital evaluation models[J].Mathematical geology,1988,20(5):491-511.
[18] Carrara A,Guzzeti F.Use of GIS technology in the prediction and monitoring of landslide hazard[J].Natureal Hazards,1999,20(2):117-135.
[19] Chung C F,Fabbri A G,Van Western C I.Multi-variate regression analysis for landslide hazard zonation[A].In:Carrara A,Guzzeti F(eds).geographical Information Systems in Assessing Natural Hazards[C].Dordrecht:Kluwer Academic Publishers,1995.107-133.
[20] Heckerman D.Probabilistic interpretation of MYCIN'scertainy fqactors[A].In:Kanal L N,Lemmer J F(eds).University in Artificial Imtelligence[C].New York:Elsevier,1986.298-311.
[21] Chung C F,Fabbri A G.Probabilistic prediction models for landslide hazard mapping[J].Photogrammetric Engineering & Remote Sensing,1999,65(12):1388-1399.
[22] Montgomery D R,Dietrich W E.A physical based model for the topographic control on shallow landsliding[J].Water Resource Research,1994,30(4):1153-1171.
[23] Dietrich W E,Reiaas R,Hsu M I,et al.A process based model for colluvial soil depth and shallow landsliding using elevation data[J].Hydrological Processes,1995,9:383-400.
[24] Wu W,Sidle R C.A distribution slope stability model for steep forested watershed[J].Water Resource Research,1995,31(8):2097-2110.
[25] 武利,张万昌,张东,等.基于遥感与地理信息系统的分布式斜坡稳定性定量评估模型[J].地理科学,2004,24(4):458~464.
[26] Chung C F,Fabbri A G.A predition models for landslide hazards using fuzzy set approach[A].In:Marchetti M,Rivas V.Geomorphology and Environmental Impact Assesssment[C].Rotterdam:A.A.Baikeman Publisher,2001.31-17.
[27] Bamaghi E,Luzi L,Madella P.Slope instability zonation:A comparison between certainty factor and fuzzy dempster-shafer approaches[J].Narural Hazards,1998,17:77-97.
[28] Zhou C U,Lee C F,Li J.On the spatial relationship between landslides and causative factors on Lantou Island,Hong Kong[J].Geomorphology,2002,43:197-207.
[29] 曾凡伟,徐刚,李青,坡面泥石流发生的坡度阀值研究[J].地理科学,2005,25(2):244~247.
[30] Greenway D R.Vegetation and slope stability[A].In:M G Richards K S(Eds.).slides investigation and mitigation,Transportation Research Anderson,Slope Stability[C].New York:Wiley,1987.187-230.
[31] 兰恒星,伍法权,周成虎,等.GIS支持下的暴雨型滑坡危险性空间预测[J].科学通报,2003,48(5):507~512.
[32] 王小丹,钟祥浩,范建容.金沙江干热河谷元谋盆地冲沟沟头形态学特征研究[J].地理科学,2005,25(1):63~67.
[33] 尤卫红,何大明,郭志荣.澜沧江径流量变化与云南降水量场变化的相关性特征[J].地理科学,2005,25(4):420~426.
[34] 胡金明,邓伟,夏佰成.LASCAM水文模型在流域生态水文过程研究中的应用——模型理论基础[J].地理科学,2005,25(4):427~433.
[35] 胡凯衡,李泳,韦方强.泥石流流域集水区面积限值与一级水系数目关系[J].地理科学,2005,25(4):473~477.
[36] 王春,汤国安,张婷,等.黄土模拟小流域降雨侵蚀中地面坡度的空间变异[J].地理科学,2005,25(6):683~689.
[37] 陈杰,韦方强,崔鹏.小江流域泥石流堆积扇形成的制约因素及其特征[J].地理科学,2005,25(6):.704~708.
[38] 索安宁,王兮之,胡玉喆,等.DCCA在黄土高原流域径流环境解释中的应用[J].地理科学,2006,26(2):205~210.
[39] 唐川,张军,万石云,等.基于高分辩率遥感影象的城市泥石流灾害损失评估[J].地理科学,2006,26(3):358~363.
[40] 陈宁生,张飞.2003年中国西南山区典型灾害性暴雨泥石流运动堆积特征[J].地理科学,2006,26(6):701~703.
[41] 许炯心,孙季.长江上游重点产沙区产沙量对人类活动的响应[J].地理科学,2007,27(2):211~218.
文章导航

/