辨识产业集群的定性方法,过于依赖专家的主观判断,存在诸多局限性。基于投入产出表构建一个反映产业之间功能联系的矩阵,采用主成分分析定量辨识基于经济技术联系的区域产业集群。此外,设计了几个衡量集群内产业联系强度的系数来判定被辨识集群的合理性,并通过相关系数衡量集群内产业的空间集聚特性。以北京市1997年投入产出表上74个制造业行业为例,采用主成分分析方法辨别出14个产业集群,包括钢压延加工集群、有机化学制品集群、电子元器件集群以及棉毛纺织集群等。集群内产业功能联系紧密,相关产业内的企业在空间上集聚,符合产业集群的理论定义。
Recently, industrial cluster has been a hot focus in economics, management and geography. Regional and industrial policies are also oriented towards the promotion of industrial clusters. The identification of local clusters, however, is still poorly established. Qualitative methods of identifying industrial clusters, such as Industry Perception Method, rely heavily on the experts' subjective judgments and lack strict rules to make decisions, therefore confine to a number of limitation. For example, the regionally dominant firms may mislead the researchers' judgments. The cross-sectional comparison of industrial clusters in different regions could be difficult. This paper demonstrates that industrial clusters can be recognized using principle component analysis (PCA). Based upon a correlation matrix, which is derived from the input-output table and measures backward and forward industrial linkages, this paper applies PCA to identifing industrial clusters. Several indices are further developed to evaluate PCA's performance in identifying regional industrial clusters. Correlation analysis is then applied to testing the spatial agglomeration of related industries. Taking Beijing as a case, this paper identifies 14 industrial clusters based on the 1997 inputing output table. Industrial clusters are formed around smelting and pressing in ferrous metals, chemicals, electronics, textiles and car production etc. Industries in those clusters are strongly tied with each other through sale-purchase linkages, and agglomerate in similar locales.
[1] Porter M. The Competitive Advantage of Nations [M]. New York: Basic Books, 1998.
[2] Porter M. Clusters and the new economics of competition [J]. Harvard Business Review, 1998, 76: 77-90.
[3] Doeringer P, Terkla D. Business strategy and cross-industry clusters [J]. Economic Development Quarterly, 1995, 9: 225-237.
[4] 魏也华, 王缉慈.产业集群:新型区域经济发展理论[J].经济经纬, 2002,(2):18~21.
[5] 安虎森,朱妍. 产业集群理论及其进展 [J]. 南开经济研究,2003,(3):31~36.
[6] 王缉慈. 创新的空间:企业集群与区域发展 [M].北京:北京大学出版社,2001.
[7] 王缉慈. 地方产业群战略[J]. 中国工业经济,2002,(3): 47~54.
[8] 杨晓慧.产业集群与日本区域经济发展及其对中国东北区的启示[J].地理科学,2003,23(5):542~546.
[9] 童昕,王缉慈.东莞PC相关制造业地方产业群的发展演变[J].地理学报,2001, (6):722~729.
[10] 童昕,王缉慈.全球化与本地化:透视我国个人计算机相关产业群的空间演变[J].经济地理,2002,(6):697~705.
[11] 朱华晟,王缉慈.论产业群内地方联系的影响因素——以东莞电子信息产业群为例[J].经济地理,2002,(4):385~393.
[12] 李小建,李二玲. 中国中部农区企业集群的竞争优势研究——以河南省虞城县南庄村钢卷尺企业集群为例[J]. 地理科学,2004, 24(2): 136~143.
[13] Anderson G. Industry clustering for economic development [J]. Economic Development Review, 1994, 12: 26-32.
[14] Campbell J. Application of graph theoretic analysis to interindustry relationships [J]. Regional Science and Urban Economics, 1975, 5: 91-106.
[15] Slater P. The determination of functionally integrated industries in the United States [J].Empirical Economics, 1977, 2:1-9.
[16] Czamanski S. Some empirical evidence of the strengths of linkages between groups of related industries in urban-regional complexes [J]. Papers of Regional Science Association, 1971, 27:137-150.
[17] Roepke H, Adams D, Wiserman R. A new approach to the identification of industrial complexes using input output data [J]. Journal of Regional Science, 1974, 14: 15-29.
[18] Czamanski S, Ablas L. Identification of industrial clusters and complexes: a comparison of methods and findings [J]. Urban Studies, 1979, 16: 61-80.
[19] O hUallachain B. The Identification of industrial complexes [J]. Annals of the Association of American Geographers, 1984,74: 420-436.
[20] Feser E, Bergman E. National industry cluster templates: a framework for applied regional cluster analysis [J]. Regional Studies, 2000,34: 1-19.