论文

农业信息系统支持下的玉米遥感估产模型研究

展开
  • 东北师范大学城市与环境科学学院, 长春130024

收稿日期: 1996-01-12

  修回日期: 1997-05-18

  网络出版日期: 1997-05-20

基金资助

国家“八五”科技攻关

STUDY ON MAIZE YIELD ESTIMATION MODEL BY REMOTE SENSING WITHIN AN AGRICULTURAL INFORMATION SYSTEM

Expand
  • College of Urban and Environmental Sciences, Northeast Normal University, Changchun 130024

Received date: 1996-01-12

  Revised date: 1997-05-18

  Online published: 1997-05-20

摘要

在县级农业信息系统的支持下,分析了玉米遥感估产机理,提出了遥感获取玉米估产因子的原理与方法,确定了探测玉米生长参数及评价玉米生态环境的遥感指数。在此基础上,分区、分阶段建立了玉米遥感综合估产模型。

本文引用格式

刘湘南, 黄方 . 农业信息系统支持下的玉米遥感估产模型研究[J]. 地理科学, 1997 , 17(3) : 265 -270 . DOI: 10.13249/j.cnki.sgs.1997.03.265

Abstract

The integration of remote sensing and geographical information system technology is an optimal method for maize yield estimation.In this study,a county agricultural information system has been established,which supports various data capture,information complex and spatial analysis.Based on the system,maize yield estimation mechanism is explored with remote sensing,whereby maize yield factors can be derived from remote sensing indices.Some relative models between vegetation index (PVI,RVI,NDCI,WDVI,TSAVI,etc.) and Leaf Area Index (LAI),chlorophyll concentration and biomass are developed.Crop Water Stress Index (CWSI) is calculated to indicate the stress of maize growing conditions.Therefore,with the aid of the system,PVI,NDCI and CWSI,which respectively stand for maize biological parameters and imitate its ecological environment,are two categories index in a comprehensive yield estimation model.Then,considering the difference of maize growing environment in Lishu county,not only three yield classes of maize are determined but also three yield estimation models for each class are developed.Moreover,yield estimation models for each maize growing stage are discussed in this paper.

参考文献

[1] 王乃斌,等.大面积小麦遥感估产模型的构建与调试方法的研究.环境遥感,1993,8(4):250~259.
[2] 徐希孺.环境监测与作物估产的遥感论文集.北京:北京大学出版社,1991.40~51.
[3] Major D J.Accuracy and sensitity analyses of SAIL model-predicted reflectance of maize.Remote Sensing of Environment,1989,29:25-37.
[4] 徐希孺.混合像元的因子分析方法及其在大范围冬小麦播种面积估算中的应用探讨.科学通报,1989,12:946~949.
[5] 宋凤斌,等.吉林玉米栽培.北京:北京农业大学出版社,1991.112~156.
[6] Jackson R D.Canopy temperature and crop waterst ress.Adv.Irrig.,1982,(1):43-85.
[7] 刘湘南,等.CWSI理论及其在玉米遥感监测与估产中的应用.东北师范大学学报,1995,(3):98~102.
[8] 郑兴年,等.河南省商丘县小麦单产模型试验研究.见:陈沈斌.小麦、玉米和水稻遥感估产技术试验研究文集.北京: 中国科学技术出版社,1993.106~115.
文章导航

/