论文

基于机载成像光谱数据的宜兴市土地利用/土地覆盖分类方法对比研究

展开
  • 中国土地勘测规划院, 北京 100029

收稿日期: 2003-01-19

  修回日期: 2003-04-03

  网络出版日期: 2004-03-20

基金资助

国土资源部2002年科技项目/资源卫星应用系统和开发0研究课题(项目编号:0131-06)。

Comparison Study of Land Use/Land Cover Classification Based on the Airborne Imaging Spectrometer Data in Yixing

Expand
  • Chinese Land Surveying and Designing Institute, Beijing 100029

Received date: 2003-01-19

  Revised date: 2003-04-03

  Online published: 2004-03-20

摘要

对宜兴市机载成像光谱数据辐进行射畸变纠正、几何精确纠正和辐射定标等预处理,获得高光谱反射率图像。利用相关系数、均方差、离散度等统计特征进行面向土地利用/土地覆盖目的的波段优选,采用高光谱像元提纯分析工具获得分类所需的终端单元,并利用终端单元进行了研究区土地利用/土地覆盖分类对比研究。研究发现:最大似然法分类精度低,整体精度为84.89%,而二进制编码、神经网络分类和光谱角分类方法精度较高,整体精度分别为87.12%,88.75%,90.41%。这说明光谱角分类是最有效的高光谱影像土地利用/土地覆盖分类方法,文章研究采用的高光谱预处理以及波段选择方法是正确的。

本文引用格式

张定祥, 刘顺喜, 尤淑撑, 周连芳 . 基于机载成像光谱数据的宜兴市土地利用/土地覆盖分类方法对比研究[J]. 地理科学, 2004 , 24(2) : 193 -198 . DOI: 10.13249/j.cnki.sgs.2004.02.193

Abstract

Taking Yixing City in Jiangsu Province as an example, a map of reflectivity is acquired after serials of pre-processing steps such as the calibration of illumination aberrance, rectification of geometry and calibration of reflectivity have been done. The effective bands are determined by analyzing the parameters of correlation of bands, entropy and separability of 128 bands. Based on the analyzing tools of hyper-spectrum images, some endmembers are acquired, and a comparison study of classification of land use/land cover has been done. The study shows that the overall accuracy of maximum likelihood is about 84.89%, and Kappa Coefficient =0.74, while overall accuracy of binary encoding, neural net and spectral angle mapping is 87.12%,88.75%,90.41% respectively. It also shows that the processing step is correct in the study, and spectral angle mapping is the most effective for imaging spectrometer data classification of land use and land cover.

参考文献

[1] 张静波.中、低空机载成像光谱仪图像的几何校正研究[J].铀矿地质,2001,17(5):307~313.
[2] 谢红接,李剑锋,刘德长,等.高光谱数据处理及其在广西苗儿山地区的地质应用研究[J].铀矿地质,1999,15(1):47~54.
[3] Resmini R G, M E karpus. Mineral mapping with hyper-spectral digital imagery collection experiment sensor data at Cuprite[J].Nevada, USA, Int J. Remote Sensing, 1997,18(7):1553-1570.
[4] Vane Gregg, Goetz Alexander F H. Terresttrial imaging spectrometry: current status, future trends[J]. Remote Sens. Environ, 1993,44: 117-126.
[5] 张良培,李德仁.鄱阳湖地区高光谱遥感数据的定标研究[J].武汉测绘科技大学学报,1997,22(1):35~38.
[6] 田庆久,董卫东,张良培.成像光谱遥感数据的光谱重建研究[J],测绘学报,1997,26(1):52~57.
[7] 田庆久,张良培,郑兰芬,等.成像光谱遥感定标模型的分析与评价[J].遥感技术与应用,1996,11(3):16~21.
[8] 王长耀,牛 铮,唐华俊,等.对地观测技术与精细农业[M].北京:科学出版社,2001.
[9] 姜小光,唐伶俐,王长耀,等.高光谱数据的光谱信息特点及面向对象的特征参数选择——以北京顺义区为例[J].遥感技术与应用,2002,17(2):59~65.
[10] 浦瑞良,宫 鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000.
文章导航

/