以土壤颗粒组成数据为基础,运用分形模型分析了红壤丘陵区耕层土壤颗粒的分形维数。结果表明,13个耕层土壤颗粒的分形维数D为2.772~2.897,其中紧砂土2.788,砂壤土2.807,中壤土2.814,轻壤土2.817。分形维数随土壤质地的变细而增大;由北向南,逐渐增加;成土母质对土壤颗粒的分形维数影响较大;D与全氮含量达极显著正相关,与有机质含量、全磷含量达显著正相关,D与有机质含量、全氮含量、速效磷含量、速效钾含量的复相关达极显著水平。
This paper analyzed the fractal dimensions of particle in plow layers of red soil, according to the data of soil particle and fractal model.The results showed that fractal dimensions of particle were 2.772 -2.897 in the plowed layers of 13 cropped fields.Among them, tighten sandy soil was 2.788,sandy loam soil was 2.807, medium loam soil was 2.814 and light loam soil was 2.817.The fractal dimensions of soil particle increased with soil texture fining.From north to south, there was decreasing tendencies.The parental materials had evident influence on the fractal dimensions of particle of soils.The fractal dimensions were in highly significant positive correlation with the contents of total nitrogen, and in very significant positive correlation with the contents of organic matter and the contents of total phosphorus.In addition, in the partial correlation with the contents of organic matter, total nitrogen, total phosphorus, available potassium, available phosphorus was highly significant.
[1] Mandelbort B B.Form Chance and Dimension[M].San Francisco:Freeman,1977.1-234.
[2] Turcotte D L.Faractal fragmentation[J].J.Geography Res.,1986,91(12):1921-1926 .
[3] Rieu M,Sposito G.Fractal Fragmentation,Soil Porosity and Soil Water Properties.Application[J].Soil Sci.Am.J.,1991,55:1231-1238.
[4] 李保国.分形理论在土壤科学中的应用及其模型[J].土壤学进展,1994,22 (1):1~10 .
[5] 鲁植雄,张维强,潘君拯.分形理论及其在农业土壤中的应用[J].土壤学进展,1994,22(5):40~45.
[6] Arya L M,Paris J F.A physicoempirical model to predict the soil moisture characteristic from particle- size distribution and bulk density data[J].Soil Soc.Am.J.,1981,45:1023-1031.
[7] Turcotte D L.Fractal fragmentation[J].J.Geography Res.,1986,91 (12 ):1921-1926.
[8] Alexandra Kravchenko,Renduo Zhang.Estimating the soil water retention from particle- size distribution:a fractal approach[J].Soil Soc.Am.J.,1998,62 (3):171-179.
[9] Friesen J P.Fractal space and rock permeability implications[J].Phys.Rev.B.,1987,38:2635-2638.
[10] Pachepsky Ya A,Shcherbakov R A,Korsunskaya L P.Scaling of soil water retention using a fractal model[J].Soil Sci.,1995,159:99-104.
[11] Bird N R H,Bartoli F,Dexter A R.Water retention models for fractal soil structures[J].Eupr.J.Soil Sci.,1996,47:1-6.
[12] 杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形 特征[J].科学通报,1993,38(20 ):1896~1899.
[13] 朱晓华,王 建,陈 霞.海岸线空间分形性质探讨[J].地理科学,2001,21(1):70~75.
[14] 张桃林,鲁如坤,李忠佩.红壤丘陵区土壤养分退化与养分库重建[J].长江流域资源与环境,1998,7(1):18~24.
[15] 潘剑君,赵其国,张桃林.江西省兴国县、余江县土壤侵蚀时空变化研究[J].土壤学报,2002,39(1):58~64.
[16] 叶 青,刘衍洪.浅析兴国县农田养分现状及调整对策[J].土壤,2000,32(1):50~53.
[17] 高安秀树.沈步明,常子文(译).分数维[M].北京:地震出版社,1989.
[18] 吴承祯,洪 伟.不同经营模式土壤团粒结构的分形特征研究[J].土壤学报,1999,36 (2 ):162~167.
[19] 董连科.分形理论及其运用[M].沈阳:辽宁科技出版社,1991.5~7.
[20] 李德成,张桃林.中国土壤颗粒组成的分形特征研究[J].土壤与环境,2000,9(4):263~265.
[21] 刘金福,洪 伟.不同起源格氏栲林地的土壤分形特征[J].山地学报,2001,19(6):565~470.
[22] 宫阿都,何毓蓉.金沙江干热河谷区退化土壤结构的分形特征研究[J].水土保持学报,2001,15(3):112~115.
[23] 张世熔,邓良基,周 倩,等.耕层土壤颗粒表面的分形维数及其与主要土壤特性的关系[J].土壤学报,2002,39(2):221~226.
[24] 龚元石,廖超子,李保国.土壤含水量和容重的空间变异及其分形特征[J].土壤学报,1998,35(1):10~15.
[25] Daniel Gimenez,Janice L Karmon,Adolfo Posadas,Richard K Shaw.Fractal dimensions of mass estimated from intact and eroded soil aggregates[J].Soil Use and Management,2002,64:165-172.