论文

基于IBIS模型的1955~2006年中国土壤温度模拟及时空演变分析

展开
  • 1. 南京大学国际地球系统科学研究所, 江苏 南京 210093;
    2. 浙江林学院国际空间生态与生态 系统生态研究中心, 浙江 杭州 311300;
    3. Stinger Ghaffarian Technologies (SGT, Inc.), contractor to the USGS EROS Center, Sioux Falls 57198, USA;
    4. 河海大学水文水资源与水利工程科学国家重点实验室, 江苏 南京 210098

收稿日期: 2009-07-14

  修回日期: 2009-11-05

  网络出版日期: 2010-05-20

基金资助

本研究得到科技部973项目(2005CB422207,2005CB422208)、科技部数据共享平台建设项目(2006DKA32308)、科技部国际合作项目(20073819)资助。

Simulation and Trend Analysis of Soil Temperature in China from 1955 to 2006 Using IBIS Model

Expand
  • 1. International Institute for Earth System Science, Nanjing University, Nanjing, Jiangsu 210093;
    2. International Research Center of Spatial Ecology and Ecosystem Ecology, Zhejiang Forestry University, Hangzhou, Zhejiang 311300;
    3. Stinger Ghaffarian Technologies (SGT, Inc.), contractor to the USGS EROS Center, Sioux Falls 57198, USA;
    4. State Key Laboratory of Hydrology, Water Resources and Hydraulic Engineering, Hohai University, Nanjing, Jiangsu 210098

Received date: 2009-07-14

  Revised date: 2009-11-05

  Online published: 2010-05-20

摘要

基于IBIS模型对中国1955~2006年的土壤上层1m的年平均与月平均土壤温度进行模拟,并利用全国气象站点土壤温度观测数据对模拟结果进行验证,结果显示中国南方区的模拟效果优于北方及青藏高原区,春、夏、秋三季模拟效果优于冬季,总体而言取得了较满意的效果。基于模拟结果,利用Mann-Kendall方法对中国1955~2006年年平均和月平均土壤温度进行趋势分析的结果表明,年平均土壤温度,中国北方呈显著上升趋势,南方呈非显著上升趋势,四川盆地、贵州中部、藏东南及天山地区等小部分区域呈现显著或非显著下降趋势;月平均土壤温度,北方基本保持显著上升趋势,南方地区7~9月份总体呈现出下降的趋势,8月份最为显著。

本文引用格式

朱求安, 江洪, 刘金勋, 方秀琴, 余树全 . 基于IBIS模型的1955~2006年中国土壤温度模拟及时空演变分析[J]. 地理科学, 2010 , 30(3) : 355 -362 . DOI: 10.13249/j.cnki.sgs.2010.03.355

Abstract

The Integrated Biosphere Simulator (IBIS) is used to evaluate the spatial and temporal patterns of annual and monthly top 1 m soil temperature across China for the period 1955-2006. Observed soil temperature data collected from 650 national meteorological stations were used to validate the simulated soil temperature in spatial and temporal scales. Mean error (ME), root mean square error (RMSE) and coefficient of determination were used as the performance criterion. The validation results presented that IBIS model performed better in the southern China than in the northern China and the Tibetan plateau region. The mean error and root mean square error are less than 2℃ in the southern China and more than 3℃ in some area of the northern China and the Tibetan plateau region for annual soil temperature. Monthly validation results showed that the model performed better in spring, summer and autumn than in winter. The mean error was bigger than 3℃ in winter and it was between -1.4℃ and 2℃ in other three seasons. The root mean square error was larger than 3.5℃ in winter and it was between 2℃ and 3℃ in other three seasons. The root mean square error and coefficient of determination also indicated better performance in the southern China than in the northern China and the Tibetan plateau region for monthly soil temperature simulation. The coefficient of determination showed that the model captured the spatial variance of soil temperature well. Based on the simulated soil temperature, trend analysis was applied for annual and monthly soil temperature from 1955 to 2006 using Mann-Kendall method. Annual soil temperature presented significant increasing trends in the northern China and slight increasing trends in the southern China. Small areas of Sichun Basin, center part of Guizhou Province, southeast part of Tibet, and Tianshan Mountains region presented significant or slight decreasing trends for soil temperature. Monthly soil temperature trends analysis presented significant increasing trends in most areas of the northern China and in the southern China the spatial pattern of trends for each month was different. From July to September, the soil temperature presented decreasing trends in most area of the southern China. In August, the soil temperature presented significant decreasing trends in the southern China. Uncertainty should be considered in soil temperature simulation. Uncertainty in observed data used to validate the simulated results, in input data such as soil texture, atmospheric boundary condition including solar radiation, air temperature and precipitation required by the models, and in spatial scale matching will make the soil temperature estimation diverge from the true state because of gradually errors accumulating.

参考文献

[1] Huang C,Li X,Lu L.Retrieving soil temperature profile by assimilating MODIS LST products with ensemble Kalman filter[J].Remote Sensing of Environment,2008,112:1320–1336.
[2] 周锁铨,张 翠,王小宁,等.多层土壤温度模拟及其检验[J].南京气象学院学报,2004,27(2):200~209.
[3] Zhang Y,Chen W,Smith S L,et al.Soil temperature in Canada during the twentieth century: Complex responses to atmospheric climate change[J].Journal of Geophysical Research,2005,110,D03112,doi:10.1029/2004JD004910.
[4] 汤懋苍,张 建,王敬香.我国季平均的0.8 m地温距平场与后一季降水的相关分析[J].气象学报,1988,46(4):481~458.
[5] 赵红岩,杨瑜峰,梁东升,等.中国北方沙尘暴与地温场的相关分析[J].中国沙漠,2007,27(3):509~513.
[6] Fang C,Moncrieff J B.The dependence of soil CO2 efflux on temperature[J].Soil Biology & Biochemistry,2001,33:155-165.
[7] Li H,Yan J,Yue X,et al.Significance of soil temperature and moisture for soil respiration in a Chinese mountain area[J].Agricultural and Forest Meteorology,2008,148:490-503.
[8] Peng S,Piao S,Wang T,et al.Temperature sensitivity of soil respiration in different ecosystems in China[J].Soil Biology & Biochemistry,2009,41:1008-1014.
[9] Mellander P-E,Bishop K,Lundmark T.The influence of soil temperature on transpiration:a plot scale manipulation in a young Scots pine stand[J].Forest Ecology and Management 2004,195:15-28.
[10] Paul K I,Polglase P J,Smethurst P J,et al.Soil temperature under forests:a simple model for predicting soil temperature under a range of forest types[J].Agricultural and Forest Meteorology,2004,121:167-182.
[11] Bond-Lamberty B,Wang C,Gower S T.Spatiotemporal measurement and modeling of stand-level boreal forest soil temperatures[J].Agricultural and Forest Meteorology,2005,131:27-40.
[12] George R K.Prediction of Soil Temperature by using Artificial Neural Networks Algorithms[J].Nonlinear Analysis,2001,47:1737-1748.
[13] 冯学民,蔡德利.土壤温度与气温及纬度和海拔关系的研究[J].土壤学报,2004,41(3):489~491.
[14] Boone A,Mognard N,Decharme B,et al.The impact of simulated soil temperatures on the estimation of snow depth over Siberia from SSM/I compared to a multi-model climatology[J].Remote Sensing of Environment,2006,101:482-494.
[15] Mellander P-E,Laudon H,Bishop K.Modelling variability of snow depths and soil temperatures in Scots pine stands[J].Agricultural and Forest Meteorology,2005,133:109-118.
[16] Wan Z,Dozier J.A generalized split-window algorithm for retrieving land-surface temperature from space[J].IEEE Transactions on Geoscience and Remote Sensing,1996,34:892-905.
[17] Wan Z,Zhang Y,Zhang Q.Validation of the landsurface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data[J]. Remote Sensing of Environment, 2002,83:168-180.
[18] 陆晓波,徐海明,孙丞虎,等.中国近50 a地温的变化特征[J].南京气象学院学报,2006,29(5):706~712.
[19] 张慧智,史学正,于东升,等.中国土壤温度的空间插值方法比较[J].地理研究, 2008,27(6):1301~1307.
[20] Foley J A,Colin P I,Ramankutty N,et al.An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics[J].Global Biogeochemical Cycles,1996,10(4):603-628.
[21] Kucharik C J,Foley J A,Delire C,et al.Testing the performance of a Dynamic Global Ecosystem Model: Water balance, carbon balance, and vegetation structure[J].Global Biogeochemical Cycles, 2000,14(3):795-825.
[22] Pollard D,Thompson S L.Use of a land-surface-transfer scheme ( LSX) in a global climate model: the response to doubling stomatal resistance[J].Global and Planetary Change,1995,10:129-161.
[23] Dickinson R E,Henderson-Sellers A,Kennedy P J,et al.Biosphere-atmoshpere tansfer scheme (BATS) for the NCAR Community Climate Model.NCAR,Boulder,CO,Tech. Note/TN-275+STR,1986.
[24] Richardson C W.Stochastic simulation of daily precipitation,temperature,and solar radiation[J].Water Resources Research,1981,17:182-190.
[25] 孟 斌,王劲峰.地理数据尺度转换方法研究进展[J].地理学报,2005,60(2):277~288.
[26] 李双成,蔡运龙.地理尺度转换若干问题的初步探讨[J].地理研究,2005,24(1):11~18.
[27] 朱求安, 张万昌, 赵登忠.基于PRISM和泰森多边形的地形要素日降水量空间插值研究[J].地理科学, 2005,25(2): 233~238.
[28] 胡 军,杜 军,边 多,等.西藏地温的年际和年代际变化[J].地理学报,2007,62(9):925~934.
[29] 张文纲,李述训,庞强强.近45 年青藏高原土壤温度的变化特征分析[J].地理学报,2008,63(11):1151~1159.
[30] 李栋梁,柳 苗,钟海玲,等.青藏铁路沿线地面气温和地温的年际变化趋势及与地形的关系[J].高原气象,2005,24(5):694~699.
[31] 杜 军,李 春,廖 健,等.近45 年拉萨浅层地温对气候变化的响应[J].气象,2007,33(10):61~67.
[32] 郭志梅,缪启龙,李 雄. 中国北方地区近50年来气温变化特征的研究[J].地理科学,2005,25(4):66~72.
[33] 张耀存,张录军.东北气候和生态过渡区50年来降水和温度概率分布特征变化[J].地理科学,2005,25(5):51~56.
[34] 卢爱刚,庞德谦,何元庆,等.全球升温对中国区域温度纬向梯度的影响[J].地理科学,2006,26(3):345~350.
文章导航

/