运用空间统计和计量经济学Moran I指数法及时空数据(Panel Data)模型分析了中国31个省级区域经济增长集聚及其影响因素。结果显示:①中国省域经济增长具有明显的空间依赖性,在地理空间上存在集聚现象,区域经济增长在时空上呈现出明显的空间效应,忽视空间效应将造成模型设定的偏差和计量结果的非科学性;②空间相关以及由此带来的国际国内贸易及外资等经济活动频繁程度,在很大程度上引起了31个省域区际经济增长的空间不均衡,空间集聚使得在经济增长过程中地理区位(距离)产生的空间成本降低,但地理特征将深刻作用于区域经济增长空间集聚的中心和外围关系;③外商直接投资、国际与区际贸易、人力资本、技术创新等因素对中国区域经济增长的贡献非常重要,但它却不能轻易改变经济地理的规则,经济增长因素在地理空间上的非均衡集聚导致了迥然不同的区域经济增长格局。
At present,the study on China's regional economic growth focuses mainly on spatial pattern, but the study on spatial correlation and the cause of formation of growth clustering and disparity distribution is seldom. This paper introduces the spatial correlation index method of Moran I and the computational and test results show that the provincial regional economic growth has an obviously spatial correlation. And the economic growth has an obviously cluster in the geographical space. We also uses the spatial econometric analysis model of spatial-temporal data(Panel Data),and the computational and test results show that the regional economic growth during time and in space takes on a distinct spatial effects. The frequent extension to economic activities produced by international and domestic trade and foreign capital etc. brings spatial correlation,and to a great extent results in the inequalities of 31 provincial economic growth. Spatial cluster makes the spatial cost which is produced by geographical location(distance)decrease during the economic growth process,but the geographical characteristics will deeply affect the relationship between core and periphery of spatial clustering in regional economic growth。At last,the econometric test show that the factors such as international and interregional trade,foreign direct investment,human capital,technological innovation have an extraordinary contribution to China's regional economic growth. But those factors cannot change the regulations of economic geography easily. The non-equilibrium clustering of regional economic growth factors in geographical space results in widely distinct patterns of regional economic growth.
[1] 李小建,乔家君. 20世纪90年代中国县际经济差异的空间分析[J]. 地理学报,2001,56(2):136~145.
[2] 杨晓光,樊杰,赵燕霞. 20世纪90年代中国区域经济增长的要素分析[J]. 地理学报,2002,57(6):701~708.
[3] Anselin L. Spatial Econometrics:Methods and Models[M]. Kluwer: Kluwer Academic Publishers, 1988.
[4] 李子奈,叶阿忠. 高等计量经济学[M]. 北京:清华大学出版社,2000.
[5] uang Y F, Yee L. Analysing regional industrialisation in Jiangsu province using geographically weighted regression[J]. Journal of Geographical Systems, 2002, 4:233–249
[6] Brunsdon C A S, Fotheringham M. Charlton. Some notes on parametric significance tests for geographically weighted regression[J]. Journal of Regional Science, 1999, 39: 497–524.
[7] Sylvie Demurger. 地理位置与优惠政策对中国地区经济发展的相关贡献[J]. 经济研究,2002,(9):14~23.
[8] Krugman P. Development, Geography and Economic Theory[M]. Cambridge: MA. MIT Press, 1995.
[9] 刘安国,杨开忠. 新经济地理学理论与模型评介[J]. 经济学动态,2001, (12):67-72.
[10] 顾朝林,王恩儒,石爱华. "新经济地理学"与经济地理学的分异与对立[J]. 地理学报,2002,57(4):497~504.
[11] Cliff A D, Ord J K. Spatial Processes: Models and Applications[M]. London: Pion Limited, 1981.
[12] Cressie N A C. Statistics for Spatial Data[M]. New York: Wiley, 1993.
[13] Moran P A P. Notes on Continuous Stichastic Phenomena[J]. Biometrika, 1950, 37:17-23.
[14] Geary R C. The Contiguity Ratio and Statistical Mapping[M]. 1954. The Incorporated Statistician, 1954. 5.
[15] Barro R,Lee J W. International Comparison of Educational Attainment[J]. Journal of Monetary Economics, 1993, 32(3):363-394.
[16] Barro R,Lee J W. International Measures of Schooling Years and Schooling Quality[J]. American Economic Review, 1997, 86(2):218-223.
[17] 中国国家统计局. 中国统计年鉴 [M]. 北京:中国统计出版社,1999~2003.