不同游客吸引半径景区国内旅游交通碳排放特征比较
作者简介:包战雄(1977-),女,福建古田人,副教授,博士研究生,主要从事旅游开发与管理研究。E-mail:baozhanx@sina.com
收稿日期: 2011-09-30
要求修回日期: 2012-03-19
网络出版日期: 2012-10-20
基金资助
福建省社科规划项目(2010B199)、福建省自然科学重点学科研究项目、福建省教育厅科技项目(JB10026)资助
Carbon Dioxide Emission From Tourist Transport in Three Destinations of Different Travel Distances
Received date: 2011-09-30
Request revised date: 2012-03-19
Online published: 2012-10-20
Copyright
旅游交通是旅游业碳排放的最重要环节。选择具有不同游客吸引半径的福州国家森林公园、太姥山山岳景区、武夷山风景名胜区为研究对象,通过对游客交通的问卷调查,探讨不同景区国内旅游交通碳排放的基本规律。研究表明,随着游客吸引半径增加,人均碳排放量显著增加,表现为福州森林公园<太姥山<武夷山。虽然每人每公里碳排放量亦表现为福州森林公园<太姥山<武夷山,但人均旅行距离的增大则是人均碳排放量增加的最主要因素。在350 km以内,每人每公里碳排放量和人均碳排放量随距离增加变化不明显或略微下降;而350 km以上,两者均随距离增加而急剧增长,这与距离对交通方式选择的影响有关。从旅游交通碳排放特征看,350 km大致可作为中途和长途旅行划分的界线。3个景区的年碳排放总量大小顺序为:武夷山>太姥山>福州森林公园,平均碳排放密度则表现为武夷山>福州森林公园>太姥山。各景区长途旅游者和乘坐飞机旅游者均占景区旅游交通碳排放的大部分,且其比例随景区游客吸引半径的增加而增多。因而减少长途旅行和乘坐飞机次数是降低景区旅游交通碳排放量的重要途径。
包战雄 , 袁书琪 , 陈光水 . 不同游客吸引半径景区国内旅游交通碳排放特征比较[J]. 地理科学, 2012 , 32(10) : 1168 -1175 . DOI: 10.13249/j.cnki.sgs.2012.010.1168
Tourism industry plays an unnegligible role in the global anthropogenic carbon dioxide (CO2) emission and climate change, with its contribution continuously increase in the future. Tourist transport is the most important activity resulting in CO2 emission in the tourism sector. To develop a low-carbon tourism industry, it is therefore necessary to assess both the patterns and causes of CO2 emission associated with tourist travel. This study selects three tourist destinations in Fujian with an increasing average tourist travel distance, namely Fuzhou National Forest Park (FZ),Taimushan National Key Scenic Spots (TMS), and Wuyishan Scenic Area (WYS), to determine the total amount, intensity, and spatial patterns of CO2 emission from domestic tourist transport. In each tourist destination, a questionnaire survey on tourist travel mode and travel distance was conducted during August to October 2010. Mean CO2 emission from individual tourist of these destinations increased with average travel distance, ranked as FZ (15.9 kg CO2/person) < TMS (105.3 kg CO2/person)<WYS (232.9 kg CO2/person). Though CO2 emission per person-kilometer also increases (FZ, 0.097 kg CO2 /(person·km); TMS, 0.134 kg CO2 /(person·km); WYS, 0.159 kg CO2 /(person·km)), the increase in average travel distance is mainly responsible for the increment of CO2 emission from individual tourist. For each destination, CO2 emission per person·km or per individual tourist within 0-350 km changed little or even declined slightly with increase in travel distance, but increased dramatically beyond 350 km, reflecting the impacts of travel distance on choice of transport mode. Thus, the distance of 350 km can be identified as a threshold for defining the medium- and the long-distance trip based on the transition in CO2 emission with travel distance. The annual total CO2 emission for these destinations rankes as WY (692 899 t)>TMS (65 651 t)>FZ (31 859 t), and the mean CO2 emission density decreases in the sequence of WYS (946.3 t/km), FZ (389.0 t/km) and TMS (166.6 t/km). Depended on both the tourist number and CO2 emission per tourist, CO2 emission density changes with travel distance and differs among destinations, which peaks at 700 km and 1 750 km in WYS, at 250 km and 2250 km in TMS, and at 75 km, 250 km, and 900 km in FZ. The major contribution to total CO2 emission in tourist transport comes from the long-distance and the aerial tourists, which increases with increasing average travel distance. Though tourists with travel distance longer than 350 km occupy only 5.5%, 27.8% and 81.3% of total tourist number respectively in FZ, TMS and WYS, they accounted for 65.1%, 90.0% and 98.7% of total CO2 emission accordingly. The aerial tourists are responsible for 51.3%, 75.4% and 87.8% of total CO2 emission, though they only contribute to 1.5%, 6.29% and 31.1% of total tourist number. Thus, to avoid long-distance or aerial trips is the most important way to cut down the CO2 emission bill associated with travel transport. Efforts that select short-distance trips or trips on more energy-efficient transport should be encouraged.
Table 1 Parameters of CO2 emission for different transport modes表1 不同交通方式的碳排放参数 |
交通方式 | 排放参数 | 参考文献 |
---|---|---|
公交车 | 0.017 kg CO2 / (人·km) | [21] |
长途客运汽车 | 0.07 kg CO2 /(人·km) | [22] |
出租车 | 0.2 kg CO2/km | [23] |
私家车 | 0.2 kg CO2/km | [23] |
电动车 | 0.009 kg CO2 /(人·km) | [24] |
摩托车 | 0.058 kg CO2 (人·km) | [24] |
普通火车 | 0.027 kg CO2 /(人·km) | [22] |
动车组列车 | 0.0267 kg CO2 /(人·km) | [22] |
国内航线飞机 | 0.3 kg CO2 /(人·km) | [23] |
Table 2 Parameters of CO2 emission for Taxi and car in each tourist destination表2 不同景区自驾车和出租车的碳排放参数 |
交通方式 | 福州森林公园 | 太姥山 | 武夷山 | ||||||
---|---|---|---|---|---|---|---|---|---|
实坐人数 (人) | 上座率 (%) | 每人每公里碳排放 [kg CO2 /(人·km)] | 实坐人数 (人) | 上座率 (%) | 每人每公里碳排放 [kg CO2 /(人·km)] | 实坐人数 (人) | 上座率 (%) | 每人每公里碳排放 [kg CO2 /(人·km)] | |
自驾汽车 | 2.8 | 70.2 | 0.071 | 3.4 | 85.0 | 0.059 | 2.9 | 73.5 | 0.068 |
出租车 | 1.6 | 53.3 | 0.125 | 1.7 | 58.0 | 0.115 | 1.8 | 60.0 | 0.111 |
Fig. 1 Changes in CO2 emission per person-kilometerwith travel distance in each destination图1 不同景区每人每公里碳排放量随距离的变化 |
Table 3 Annual tourist number and CO2 emission of each tourist destination表3 不同景区的碳排放特征比较 |
福州森林公园 | 太姥山 | 武夷山 | |
---|---|---|---|
吸引半径 (km) | 81.9 | 394.1 | 732.2 |
每人每公里碳排放量 [kg CO2 /(人·km)] | 0.097 | 0.134 | 0.159 |
人均碳排放量(kg CO2/人) | 15.9 | 105.3 | 232.9 |
碳排放密度(t CO2/ km) | 389.0 | 166.6 | 946.3 |
年游客量(万人) | 198.8 | 62.4 | 297.5 |
年碳排放量(t CO2/a) | 31 859 | 65 651 | 692 899 |
Table 4 Mean travel distance, percentages of tourist number and CO2 emission for different transport mode in each destination表4 各景区不同交通方式的平均旅行距离及其所占人数和碳排放比例 |
交通方式 | 福州森林公园 | 太姥山 | 武夷山 | ||||||
---|---|---|---|---|---|---|---|---|---|
平均距离 (km) | 人数比例 (%) | 排放比例 (%) | 平均距离 (km) | 人数比例 (%) | 排放比例 (%) | 平均距离 (km) | 人数比例 (%) | 排放比例 (%) | |
飞机 | 940.0 | 1.5 | 51.3 | 2 102.3 | 6.3 | 75.4 | 1095.2 | 31.1 | 87.8 |
普通火车 | 445.5 | 1.4 | 2.0 | 612.4 | 3.3 | 1.0 | 670.7 | 45.6 | 7.1 |
动车组列车 | 251.2 | 6.0 | 5.1 | 364.8 | 24.8 | 4.6 | |||
客运汽车 | 143.9 | 25.1 | 31.7 | 281.7 | 36.1 | 13.5 | 469.2 | 11.7 | 3.3 |
自驾汽车 | 70.8 | 10.9 | 6. 9 | 197.7 | 24.5 | 5.4 | 368.4 | 8.3 | 1.8 |
出租车 | 15.0 | 12.0 | 2.6 | 15.0 | 0.3 | 0.01 | 27.3 | 1.5 | 0.04 |
电动自行车 | 3.1 | 4.0 | 0.01 | 15.0 | 0.3 | 0.001 | |||
公交 | 4.2 | 28.0 | 0.3 | 14.0 | 2.0 | 0.01 | 15.0 | 1.9 | 0.004 |
摩托车 | 3.9 | 5.0 | 0.1 | 12.0 | 1.0 | 0.01 | |||
自行车 | 2.8 | 3.3 | 0.0 | 24.5 | 1.3 | 0.0 | |||
步行 | 1.1 | 3.0 | 0.0 |
注:空格处说明该景区没有相应的交通方式。 |
Fig. 2 Changes in individual tourist CO2 emission with travel distance in each destination图2 不同景区人均排放强度随距离的变化 |
Fig. 3 Changes in CO2 emission per kilometer with travel distance in each destination图3 不同景区排放密度随距离的变化 |
Fig. 4 Changes in cumulative percentage tourist number and CO2 emission with travel distance in each destination图4 不同景区游客量和碳排放量累积百分比随距离的变化 |
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
福建省旅游局. 2010年全省旅游经济指标分析[N/OL]. [2011-01-28].
110128995.html.
|
[21] |
|
[22] |
台湾高铁公司.《2009台湾高铁企业社会责任白皮书》[R/OL].
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
/
〈 | 〉 |