2012 , Vol. 32 >Issue 10: 1236 - 1240

GIS中面积偏差控制下的矢量数据压缩算法

• 米学军 ,
• 盛广铭 ,
• ,
• ,
• 白焕新 ,
• 侯伟

• 江南遥感应用研究所,上海 200436

要求修回日期: 2012-07-10

网络出版日期: 2012-10-20

A New Algorithm of Vector Date Compression Based On the Tolerance of Area Error in GIS

• MI Xue-jun ,
• SHENG Guang-ming ,
• ZHANG Jing ,
• BAI Huan-xin ,
• HOU Wei
Expand
• Institute of Remote Sensing Applications Southern Yangtze,Shanghai 200436,China

Request revised date: 2012-07-10

Online published: 2012-10-20

### Abstract

：In GIS, vector data is the most commonly used data structure. Data compression is an issue in vector data processing and applications. In this paper,several commonly used algorithms of vector data compression are analyzed and a new efficient algorithm is proposed to resolve the problems of the classic algorithms. The Douglas-Peucker algorithm and the vertical distance tolerance algorithm are commonly used algorithms in vector data compression.The Douglas-Peucker algorithm have the advantage that it has invariance in translation and rotation, but at the same time the result has a big area error and there is a contradiction between the compression ratio and retention of feature points for the curvature change. The advantages of the vertical distance tolerance algorithm is fast, but the area error and the characteristics of the retention curve space are very poor. In this paper,a new algorithm is proposed which improved vertical distance tolerance algorithm and resolved the shortcomings of the Douglas-Peucker algorithm and the vertical distance tolerance algorithm.The basic idea of the new algorithm is based on the vertical distance tolerance algorithm which increase an area error tolerance by adopting the method of straight line fitting to approximate the axis of the polyline in order to resolve the problem of the area error and declination of segment in space. An experiment is included, which verified the new algorithm is efficient by the example of dealing with the boundary contour vector of Chongming Island, Shanghai. In the experiment ,the new algorithm has only 1 km2 error, but the classic algorithms has 6 km2 of the error. The most advantage of the new algorithms is that the area error can be controlled in a specified range. The experiments show that comparing with the two classic algorithms,the new algorithm has no substantial advantage in the compression ratio,but greatly improved the performance of two targets, area error and declination of segment in space. It proved that the new algorithm is efficient in the data procession which has high requirement in area accuracy and spatial characteristics such as the use of land resources.

### 2 面积偏差控制下的线段动态拟合矢量数据压缩法

#### 2.1 基本思想与算法实现

s=SACD+SEDF+SFGH+SHIB/|AB| （1）

#### 2.2 案例分析

##### Fig. 5 Spatial overlay of among the original data , the classic algorithm and the author′s algorithm results in drawing of partial enlargement

###### Table 1 Area error comparison between the classic algorithm and the author’s

2、3号节点间 11.97 明显偏移 5.0 无明显偏移
4、5号节点间 7.06 明显偏移 5.0 无明显偏移
5、6号节点间 12.34 明显偏移 5.0 无明显偏移
6、7号节点间 5.87 明显偏移 5.0 无明显偏移
7、8号节点间 0.18 无明显偏移 0.18 无明显偏移
8、9号节点间 4.5 无明显偏移 4.5 无明显偏移
10、11号节点间 3.45 无明显偏移 3.45 无明显偏移
12、13号节点间 10.06 明显偏移 5.0 无明显偏移
15、16号节点间 17.64 明显偏移 5.0 无明显偏移

### 3 结 论

The authors have declared that no competing interests exist.

### 参考文献

 [1] 黄杏元. 地理信息系统概论[M].高等教育出版社,1989.
 [2] 刘兆礼. 遥感影像屏幕数字化高效方法研究[J].地理科学,1999,19(3):250~253.
 [3] 赵斌. 导航地理数据生产系统及其关键技术研究[D].郑州:中国人民解放军信息工程大学,2007.
 [4] 黄培之. 具有预测功能的曲线矢量数据压缩方法[J].测绘学报,1995,24(4):316~319.
 [5] 杨得志,王杰臣,闾国年.矢量数据压缩的Douglas-Peucker算法的实现与改进[J].测绘通报,2002,(7):18~19.
 [6] 刘晓红,李树军.矢量数据压缩的角度分段道格拉斯算法研究[J].四川测绘,2005,28(2):51~52.
 [7] 杨云,孙群,朱长青.曲线数据压缩的总体最小二乘算法[J].西安电子科技大学学报,2008,35(5):946~950.
 [8] 陈飞翔,周治武,张建兵.基于动态规划算法的矢量数据压缩改进算法[J].计算机应用,2008,28(1):168~170.
 [9] Jaafar J.Line Generalization: Least Square with Double Tolerance[C].Third International Conference on Management Information Systems Incorporating GIS & Remote Sensing. Southampton: Wessex Institute of Technology, 2002:135-144.
 [10] Hershberger J, Snoeyink J.An O (nlogn) implementation of the Douglas-Peucker algorithm for line simplification[C].Proceedings of the Tenth Annual Symposium on Computational Geometry,1994,(6):383-384.
 [11] Ramer U.An Iterative Procedure for the polygonal Approximation of Plane Curves[J]. Computer Graphics and Image Processing,1972,(1):244-256 .
 [12] 杨海军,邵全琴.GIS 空间分析技术在地理数据处理中的应用研究[J].地球信息科学,2007,9(5):70~75.
 [13] 彭认灿,董箭,郑义东,等. 垂距法与道格拉斯-普克法删除冗余顶点效率的比较[J].测绘通报,2010,(03): 66~67.
 [14] 陈春,王野乔,薄立群,等.地理信息系统中矢量数据快速求交及其应用[J].地理科学,1990,10(2): 134~141.
Options

/

 〈 〉