黄河口滨岸潮滩湿地土壤碳、氮的空间分异特征
作者简介: 牟晓杰 (1982-), 女, 山东栖霞人, 博士研究生, 主要从事湿地生物地球化学研究。 E-mail:xjmou@163.com
收稿日期: 2011-09-13
要求修回日期: 2011-11-10
网络出版日期: 2012-12-20
基金资助
国家自然科学基金 (41171424), 国家海洋局海洋公益性行业科研专项经费项目子课题(2012418008-3),山东省自然科学基金重点项目(ZR2010DZ001), 中国科学院战略性先导科技专项(XDA05030404),中国科学院人才专项(青年创新促进会)和中国科学院知识创新工程重要方向项目(KZCX2-YW-223)资助
Spatial Distribution Patterns of Carbon and Nitrogen in the Tidal Marsh Soil of the Yellow River Estuary
Received date: 2011-09-13
Request revised date: 2011-11-10
Online published: 2012-12-20
Copyright
2009年5月,运用地统计学方法研究了黄河口滨岸潮滩湿地土壤碳、氮的空间分布格局。结果表明,潮滩湿地土壤的TC、TN和C/N含量具有明显的水平变异性,自表层向下均呈显著降低趋势,总体表现为TN>C/N>TC。潮滩湿地土壤不同土层TN和C/N含量的水平分布空间结构明显,分别符合不同的变异函数理论模型,且具有强烈/中等程度的空间相关性,其空间变异性均以向低潮滩延伸且受潮汐涨落影响较大的方向为最大,自然结构因素在引起TN和C/N空间异质性中的贡献占优,随机因素的影响相对较小。潮滩湿地土壤不同土层TN和C/N具有明显的空间分布格局,表层土壤的TN含量向低潮滩延伸方向形成明显斑块低值区,边缘则形成斑块高值区,而不同土层的C/N以及亚表层的TN则与之相反。研究发现,微地貌特征和潮汐微域物理扰动强度是导致空间异质性的重要随机因素,而水盐条件、土壤类型和潮汐物理扰动是重要结构因素。湿地有机质来源以陆源为主,且越靠近海的方向,潮滩湿地土壤中的有机质受陆源的影响越大。
牟晓杰 , 孙志高 , 刘兴土 . 黄河口滨岸潮滩湿地土壤碳、氮的空间分异特征[J]. 地理科学, 2012 , 32(12) : 1521 -1529 . DOI: 10.13249/j.cnki.sgs.2012.012.1521
In May 2009, the spatial distribution patterns of carbon and nitrogen contents in the tidal marsh soil of the Yellow River estuary were studied by geostatistic methods. Results showed that the horizontal variability of TC, TN and C/N in the tidal marsh was significant and decreased with depths, in the order of TN> C/N> TC. The horizontal distribution of TN contents and C/N in different soil layers had significant spatial structure, which accorded with different variogram theoretical model and had a strong or moderate spatial correlation. The maximum spatial variability was observed in the direction extending to the low tidal marsh, which was greatly affected by the ebb and flow of tide. The natural structure factors had significant effects on the spatial variability, while the effects of random factors were relatively low. The spatial distribution patterns of TN contents and C/N in different soil layers were significant, the low TN contents in topsoil was generally observed in the direction extending to the low tidal marsh and the high value appeared on the edge of the study area, while the C/N ratio of the different soil layers and the TN content in subsurface layer were opposite. This study indicated that micro-physiognomy characteristic and tidal micro-domain physical disturbance were two important random factors to induce spatial heterogeneity, while water and salinity statuses, soil types and tide physical disturbance were three important structure factors. The sources of organic matter in the tidal marsh were mainly land-based sources, and the effects of land-based sources on organic matter in the tidal marsh were greater in the direction closer to the sea.
Table 1 Descriptive statistics results of C and N in different soil layers表1 不同土层C、N的描述性统计结果 |
土层(cm) | 项目 | 均值 (mg/kg) | 标准差 (mg/kg) | 变异系数( %) | 最大值 (mg/kg) | 最小值 (mg/kg) | 偏度 Sk | 峰度 Ku | PK-S |
---|---|---|---|---|---|---|---|---|---|
0~10 | TC | 22139.31 | 3444.74 | 15.56 | 26782.65 | 11752.74 | -1.440 | 2.157 | 0.043 |
TN | 743.90 | 218.59 | 29.38 | 1120.54 | 205.02 | -0.695 | 0.395 | 0.226 | |
C/N | 31.85 | 7.71 | 24.22 | 57.33 | 21.90 | 1.331 | 1.147 | 0.149 | |
10~20 | TC | 22822.78 | 2403.24 | 10.53 | 26395.21 | 15384.72 | -1.227 | 1.425 | 0.042 |
TN | 631.31 | 120.11 | 19.03 | 846.54 | 259.17 | -0.745 | 1.010 | 0.355 | |
C/N | 37.07 | 5.59 | 15.09 | 65.31 | 29.54 | 2.190 | 6.452 | 0.211 |
Fig.1 Isotropic semivariogram of TN and C/N ratio in marsh soil图1 湿地土壤中TN和C/N比的各向同性半方差函数 |
Table 2 Parameters of the best-fitted semivariogram model for isotropic variogram表2 各向同性下变异函数理论模型及参数 |
项目 | 土层(cm) | 理论模型 | 块金值(C0) | 基台值 (C0+C) | 块金/基台 (C/C0+C) | 变程 (a) | 决定系数(R2) | 残差 (RSS) | 分维数 (D) |
---|---|---|---|---|---|---|---|---|---|
TN | 0~10 | 球状模型 | 1500.00 | 67870.00 | 0.978 | 123.70 | 0.967 | 1.17E+08 | 1.614 |
10~20 | 球状模型 | 4430.00 | 14900.00 | 0.703 | 59.70 | 0.765 | 2.08E+07 | 1.856 | |
C/N | 0~10 | 球状模型 | 4.50 | 91.37 | 0.951 | 152.90 | 0.982 | 89.50 | 1.614 |
10~20 | 指数模型 | 22.69 | 45.39 | 0.500 | 196.00 | 0.629 | 40.6 | 1.932 |
Table 3 Parameters of the best-fitted semivariogram model for anisotropic variogram表3 各向异性下变异函数理论模型及参数 |
项目 | 土层(cm) | 理论模型 | 块金值(C0) | 基台值 (C0+C) | 块金/基台 (C/C0+C) | 变程 (a1) | 变程(a2) | 决定系数(R2) | 残差 (RSS) |
---|---|---|---|---|---|---|---|---|---|
TN | 0~10 | 指数模型 | 100.00 | 117148.90 | 0.999 | 113.50 | 113.0 | 0.946 | 1.57E+10 |
10~20 | 指数模型 | 9540.00 | 36277.59 | 0.737 | 372.90 | 372.90 | 0.493 | 8.37E+08 | |
C/N | 0~10 | 球状模型 | 5.10 | 153.84 | 0.967 | 269.70 | 269.70 | 0.942 | 25981.44 |
10~20 | 指数模型 | 23.91 | 79.77 | 0.700 | 1009.60 | 507.00 | 0.560 | 3689.43 |
Fig.2 Anisotropic semivariogram of TN and C/N ratio in marsh soil图2 湿地土壤中全氮和C/N比的各向异性半方差函数 |
Table 4 Comparison of physical and chemical properties of different soil layers in the two sub-areas (means ±S.D)表4 两个分区不同土层理化性质对比 |
样区 | 土层(cm) | 容重 (g/cm3) | 含水量 (cm3/cm3) | 电导率 (mS/cm) | pH | NH4+-N (mg/kg) | NO3--N (mg/kg) | TC (%) | TN (mg/kg) | C/N |
---|---|---|---|---|---|---|---|---|---|---|
Ⅰ区(n=56) | 0-10 | 1.30±0.01 | 0.428±0.012 | 11.52±2.29 | 7.75±0.06 | 11.88±4.61 | 3.76±1.39 | 2.31±0.28 | 820.54±184.00 | 29.36±6.11 |
10-20 | 1.38±0.02 | 0.440±0.011 | 9.83±0.94 | 7.68±0.05 | 13.48±6.09 | 4.07±1.85 | 2.32±0.19 | 655.16±99.86 | 35.91±3.86 | |
Ⅱ区(n=24) | 0-10 | 1.47±0.02 | 0.467±0.009 | 7.85±0.75 | 8.30±0.16 | 10.31±8.10 | 3.32±1.46 | 2.00±0.39 | 565.06±188.37 | 37.65±8.05 |
10-20 | 1.52±0.01 | 0.451±0.011 | 6.96±0.84 | 8.28±0.12 | 12.24±2.00 | 4.52±1.39 | 2.20±0.32 | 575.64±145.22 | 39.77±7.81 |
Fig.3 Spatial distribution characteristics of nitrogen in marsh soil图3 湿地土壤氮的空间分布特征 注:a. 0~10 cm TN; b. 10~20 cm TN; c. 0~10 cm C/N; d. 10~20 cm C/N |
Table 5 Correlations between C and N in wetland soil表5 湿地土壤C、N的相关关系 |
土层(cm) | 项目 | TC | TN | NO3--N | NH4+-N | C/N |
---|---|---|---|---|---|---|
0~10 | TC | 1 | 0.891** | 0.293** | 0.355** | -0.807** |
TN | 1 | 0.271* | 0.286* | -0.931** | ||
NO3--N | 1 | -0.028 | -0.259* | |||
NH4+-N | 1 | -0.261* | ||||
C/N | 1 | |||||
10~20 | TC | 1 | 0.845** | 0.239* | 0.030 | -0.559** |
TN | 1 | 0.281* | 0.118 | -0.873** | ||
NO3--N | 1 | -0.016 | -0.154 | |||
NH4+-N | 1 | -0.139 | ||||
C/N | 1 |
注:* p=0.05水平上显著相关; ** p=0.01水平上显著相关; n=80。 |
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
/
〈 | 〉 |