内蒙古典型草原区的格点地上生物量与格点的纬度和经度均存在显著正相关关系,呈现北高南低、东高西低的空间分布格局;各气象站点所在地的草地地上生物量与多年平均年降水量之间存在显著正相关关系,与多年平均年均温之间存在显著负相关关系,而与多年平均年干燥度之间亦存在显著负相关关系,且在干燥度介于1~1.5的地区,地上生物量对干燥度变化的响应非常敏感;草地地上生物量的空间分布格局主要是在水热条件共同作用下形成的,年降水量的近东西向分布决定地上生物量分布的近东西向分异特点,而气温和降水的共同作用决定地上生物量分布的近南北向分异特点。
Studying a high spatial-resolution distribution pattern of observed aboveground biomass of grasslands and its climatic attributions within a continuous geographical area and during a specific time period is crucial for assessing responses of the net primary production of grasslands to climate change, and validating satellite derived and model estimated grassland aboveground biomass. Using statistical data of the grassland investigation in Inner Mongolia during the 1980s and Geographic Information System techniques, we produced a distribution map of the grassland aboveground biomass with a 1km?1km spatial resolution for the typical steppe of Inner Mongolia, and then analyzed the spatial patterns of the aboveground biomass and its relation to thermal-moisture conditions. The grid aboveground biomass has a significantly positive correlation with latitudes and longitudes of the corresponding grids (P<0.001), representing a decreased tendency from north to south and from east to west. The aboveground biomass at meteorological stations has a significantly positive correlation with mean annual precipitation (P<0.001) and a significantly negative correlation with mean annual air temperature (P<0.001) and mean annual aridity index (P<0.001). It is worth to note that in areas with the mean annual aridity index between 1 and 1.5, the aboveground biomass has a very sensitive response to changes of the aridity index. The spatial patterns of the aboveground biomass was therefore shaped under the controls of thermal-moisture conditions: longitudinal distribution characteristics of the aboveground biomass were mainly determined by mean annual precipitation, whereas latitudinal distribution characteristics of the aboveground biomass were influenced by both mean annual air temperature and mean annual precipitation.
[1] Hall D O, Scurlock J M O, Ojima D S, et al. Grasslands and the global carbon cycle: modeling the effects of climate change[C]. //Wigley T M L, Schimel D S. The Carbon Cycle. Cambridge: Cambridge University Press, 2000: 102-114.
[2] 韩 彬,樊江文,钟华平.内蒙古草地样带植物群落生物量的梯度研究[J].植物生态学报,2006,30(4):553~562.
[3] 马文红,方精云. 内蒙古温带草原的根冠比及其影响因素[J].北京大学学报(自然科学版),2006,42(6):774~778.
[4] Gu L, Post W M, Baldocchi D, et al. Phenology of vegetation photosynthesis[C].// Schwartz M. Phenology: An Integrative Environmental Science. Dordrecht / Boston / London: Kluwer Academic Publishers, 2003: 467-485.
[5] Yang L, Wylie B K, Tieszen L L, et al. An analysis of relationships among climate forcing and time-integrated NDVI of grasslands over the U.S. Northern and Central Great Plain [J]. Remote Sensing of Environment, 1998, 65: 25-37.
[6] 朴世龙,方精云,贺金生,等.中国草地植被生物量及其空间分布格局[J].植物生态学报,2004,28(4):491~498.
[7] 李素英,李晓兵,莺 歌,等.基于植被指数的典型草原区生物量模型——以内蒙古锡林浩特市为例[J].植物生态学报,2007,31(1):23~31.
[8] 李银鹏,季劲钧.内蒙古草地生产力资源和畜牧量的区域尺度模式评估[J].自然资源学报,2004,19(5):610~616.
[9] Sitch S, Smith B, Prentice I C, et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model [J]. Global Change Biology, 2003, 9: 161-185.
[10] 李 博,雍世鹏,李忠厚.锡林河流域植被及其利用[C].//中国科学院内蒙古草原生态系统定位站.草原生态系统研究(第3集).北京:科学出版社,1988:84~183.
[11] 吕新龙.呼伦贝尔地区草甸草原初级生产力动态研究[J].中国草地,1994,4:8~11.
[12] 刘正恩,王昱生,潘介正,等.羊草草原地上生物量的预测[J].生态学杂志,2004,23(4):179~183.
[13] 李永宏,莫文红,杨 持,等.内蒙古主要草原植物群落地上生物量和理论载畜量及其与气候的关系[J].干旱区资源与环境,1994,8(4):43~50.
[14] 李月丛,许清海,肖举乐,等.中国北方几种灌丛群落表土花粉与植被关系研究[J].地理科学,2007,27(2):205~210.
[15] 王爱玲,朱文泉,李 京,等.内蒙古生态系统服务价值遥感测量[J].地理科学,2007,27(3):325~330.
[16] 刘传胜,张万昌,雍 斌.基于两种新型景观指数的张掖绿洲植被格局动态研究[J].地理科学,2008,28(1):59~65.
[17] 牛建明.气候变化对内蒙古草原分布和生产力影响的预测研究[J].草地学报,2001,9(4):277~282.
[18] 中国科学院中国植被图编辑委员会.1:100万中国植被图集(第一版)[M].北京:科学出版社,2001:242~243.
[19] 孟 猛,倪 健,张治国.地理生态学的干燥度指数及其应用评论[J].植物生态学报,2004,28(6):853~861.