中国直播电商发展的空间差异与影响机理研究
张英浩(1993–),男,山东淄博人,博士研究生,研究方向为城市地理与城市经济。E-mail: zhangyinghao16@mails.ucas.ac.cn |
收稿日期: 2021-03-12
修回日期: 2021-07-21
网络出版日期: 2022-09-20
基金资助
国家社会科学基金项目(19AZD007)
国家自然科学基金项目(42171207)
上海市教育委员会科研创新计划重大项目(2021-01-07-00-08-E00130)
版权
Spatial Differences in the Development of Livestreaming E-commerce and Influence in China
Received date: 2021-03-12
Revised date: 2021-07-21
Online published: 2022-09-20
Supported by
National Social Science Foundation of China(19AZD007)
National Natural Science Foundation of China(42171207)
Innovation Program of Shanghai Municipal Education Commission(2021-01-07-00-08-E00130)
Copyright
直播电商作为一种赋能地区发展的新型技术形式与商业模式,改变着传统购物模式、产业链与供应链结构,逐渐成为经济发展的新引擎。基于抖音平台直播带货等多元开源数据,运用演化经济地理学中相关概念,实证分析了中国292个地级及以上城市的直播电商空间分布格局与影响因素。结果表明:直播带货主播数量与粉丝数量的空间格局表现出一定的相似性,但后者空间分布更加分散;直播带货销售额的地区差异性最大,并且在长三角和珠三角核心地区出现显著高高集聚区。地区产业与供应链基础是发展直播电商的重要保障,Multi-Channel Network(MCN)和直播带货主播发挥着整合、链接区域内外相关资源的重要角色。此外,政府行为和空间邻近效应对直播电商发展也有积极的影响。
张英浩 , 汪明峰 , 汪凡 , 刘婷婷 . 中国直播电商发展的空间差异与影响机理研究[J]. 地理科学, 2022 , 42(9) : 1555 -1565 . DOI: 10.13249/j.cnki.sgs.2022.09.005
In this paper, the theories and concepts of path dependence, path creation and agency in evolutionary economic geography are used to analyze the development mechanism of livestreaming e-commerce. Then, based on multiple open-source data such as DouYin platform, the regional differences, spatial distribution patterns and influencing factors of livestreaming e-commerce in 292 cities above prefecture level in China are empirically analyzed by Cartogram method, exploratory spatial data analysis tools, coefficient of variation, theil index and spatial econometric model. The results show that the spatial pattern of the number of streamers and the number of followers shows some similarity but with some spatially divergent characteristics. The most significant regional variability and spatial unevenness in the sales of livestreaming e-commerce are found in the core regions of the Yangtze River Delta and the Pearl River Delta, with significantly high and high clustering areas. In addition, the empirical measurement results show that the number of Taobao villages, the index of online e-commerce, the number of head streamers with goods, the number of other streamers with goods, the number of MCN and the level of express logistics services are the significant factors affecting the regional differences in the development level of livestreaming e-commerce. We found that the development of livestreaming e-commerce results from a combination of mechanisms and factors. Specifically, at first, the regional industry and the supply chain base are necessary guarantees for the development of livestreaming e-commerce. Secondly, MCN and streamers with goods play an essential role in integrating and linking relevant resources within and outside the region. In addition, government encouragement and support actions and the spatial effect of neighbouring regions positively impact the development of livestreaming e-commerce. In the future, the exploration of the interactions and relationships between supply and industry chains, actors, institutions and government actions in typical cities where livestreaming e-commerce is well developed will also be a key focus of EEG and Internet geography.
表1 直播电商发展的影响因素指标与描述统计Table 1 Impact factors and descriptive statistics of livestreaming e-ecommerce development |
视角 | 指标 | 数据来源 | 英文 | VIF |
注:粉丝数量没有通过多重共线性检验,因此VIF一栏显示“−”;未含港澳台数据。 | ||||
经济发展水平与需求 | 人均GDP | 《2019年中国城市统计年鉴》[31] | RGDP | 1.33 |
粉丝数量 | 蝉妈妈 | NF | − | |
相关产业基础 | 淘宝村数量 | 2019年淘宝村名单( http://i.aliresearch.com) | TBV | 1.36 |
网商指数 | 阿里巴巴网商指数[32] | OSI | 1.41 | |
规模以上批发零售贸易企业数 | 《2019年中国城市统计年鉴》[31] | WRE | 2.25 | |
相关基础设施 | 互联网宽带接入用户数 | 《2019年中国城市统计年鉴》[31] | IBS | 2.39 |
提供快递服务的企业数量 | 天眼查( https://www.tianyancha.com)、 高德地图( https://lbs.amap.com) | CS | 1.08 | |
关键行动者能动性 | 头部直播带货主播数量 | 蝉妈妈 | HA | 1.41 |
非头部直播带货主播数量 | 蝉妈妈 | PA | 3.10 | |
中介机构能动性 | 从事直播电商的企业数量 | 天眼查 | CLE | 1.28 |
MCN机构数量 | 《2020年中国MCN行业发展研究白皮书》 ( https://www.cbndata.com)、 《2019年MCN机构价值白皮书》( http://www.199it.com) | MCN | 1.69 | |
相关投资行为 | 投资事件数量 | 清科创业中心( https://space.pedaily.cn)、 锐思数据( http://www.resset.com) | IE | 1.67 |
政府行为 | 国家电子商务示范基地数量 | 商务部网站( http://www.mofcom.gov.cn) | NEDB | 1.94 |
图2 中国直播粉丝数量的空间分布及其空间拓扑示意图审图号为GS(2020)4630号,底图无修改;未含港澳台数据 Fig. 2 Spatial distribution of the total number of followers and its cartogram in China |
表2 中国直播带货主播数量、粉丝数量、直播带货销售额的规模与地区强度排序Table 2 Scale and regional intensity ranking of streamers, fans and total sales from livestreaming e-ecommerce in China |
序号 | 直播带货主播数量 绝对强度 | 直播带货主播数量 区域强度 | 区域强 度值 | 粉丝数量 绝对强度 | 粉丝数量 区域强度 | 区域强 度值 | 直播带货销 售额绝对强度 | 直播带货销 售额区域强度 | 区域强 度值 |
注:区域强度表示地图变形比值,即区域强度值=变形后区域面积/变形前区域面积;地图变形比值越大,区域该属性越有优势[18];未含港澳台数据。 | |||||||||
1 | 杭州市 | 深圳市 | 15.03 | 北京市 | 深圳市 | 32.99 | 杭州市 | 广州市 | 64.44 |
2 | 广州市 | 厦门市 | 11.21 | 杭州市 | 厦门市 | 24.43 | 广州市 | 深圳市 | 62.27 |
3 | 苏州市 | 东莞市 | 10.80 | 广州市 | 广州市 | 22.98 | 北京市 | 杭州市 | 51.07 |
4 | 金华市 | 中山市 | 9.61 | 成都市 | 东莞市 | 18.14 | 深圳市 | 东莞市 | 36.18 |
5 | 深圳市 | 广州市 | 9.13 | 长沙市 | 北京市 | 14.90 | 长沙市 | 佛山市 | 27.21 |
6 | 北京市 | 珠海市 | 8.20 | 深圳市 | 杭州市 | 14.45 | 苏州市 | 嘉兴市 | 23.33 |
7 | 成都市 | 佛山市 | 7.76 | 青岛市 | 佛山市 | 12.57 | 成都市 | 厦门市 | 16.21 |
8 | 郑州市 | 苏州市 | 6.37 | 郑州市 | 成都市 | 12.43 | 嘉兴市 | 中山市 | 16.19 |
9 | 长沙市 | 汕头市 | 6.09 | 上海市 | 郑州市 | 12.31 | 上海市 | 苏州市 | 16.00 |
10 | 重庆市 | 无锡市 | 5.96 | 沈阳市 | 上海市 | 11.55 | 金华市 | 湖州市 | 15.66 |
表3 中国直播电商发展水平影响因素的回归结果和稳健性检验Table 3 Regression results of factors influencing of livestreaming e-ecommerce development and robustness test in China |
视角 | 变量 | OLS | SLM | SEM | 模型一 | 模型二 |
注:***、**、*分别表示在0.01、0.05和0.1水平上显著;变量含义见表1;括号内数据为标准差。“–”表示无数据;未含港澳台数据。 | ||||||
经济发展水平 | RGDP | –0.0341 (0.0663) | –0.0321 (0.065) | –0.0466 (0.0622) | –0.1596 (0.058) | – |
相关产业基础 | TBV | 0.0841*** (0.016) | 0.0813*** (0.0145) | 0.0736*** (0.0150) | 0.0634*** (0.0191) | – |
OSI | 0.0648** (0.0319) | 0.0579* (0.0317) | 0.0123* (0.0316) | 0.209*** (0.0243) | – | |
WRE | 0.0314 (0.068) | 0.0298 (0.0667) | 0.0479 (0.0654) | 0.0515 (0.0342) | – | |
相关基础设施 | IBS | 0.2047** (0.095) | 0.1985** (0.093) | 0.1287 (0.0921) | 0.1099 (0.0216) | – |
CS | 0.0477* (0.0261) | 0.0450 (0.0287) | 0.0403* (0.0269) | 0.0451* (0.0288) | – | |
关键行动者能动性 | HA | 0.0571** (0.023) | 0.0565** (0.0226) | 0.0540** (0.0214) | – | 0.0482** (0.0192) |
PA | 1.2971*** (0.1538) | 1.2947*** (0.1506) | 1.4993*** (0.1547) | – | 1.2240*** (0.0991) | |
中介机构能动性 | MCN | 0.0749*** (0.0251) | 0.0766*** (0.0245) | 0.0786*** (0.0233) | – | 0.1099*** (0.0216) |
CLE | –0.0077 (0.0158) | –0.0073 (0.0155) | –0.0068 (0.0151) | – | 0.0135 (0.0139) | |
相关投资行为 | IE | 0.0182 (0.0382) | 0.0175 (0.0372) | 0.0076 (0.0362) | 0.0887 (0.0337) | 0.0150 (0.0138) |
行为 | NEDB | 0.6322* (0.3726) | 0.5216 (0.3435) | 0.6251* (0.3637) | 0.9187*** (0.3060) | 0.8729*** (0.2883) |
常数项 | 9.2112*** (1.0534) | 8.8862*** (1.0889) | 8.6186*** (1.0152) | 1.0992* (0.6579) | –2.6127*** (0.8058) | |
空间误差项 | − | − | 0.2979*** (0.0757) | 0.3024*** (0.0755) | 0.2979*** (0.0757) | |
空间滞后项 | − | 0.0261 (0.0307) | − | – | – | |
R2 | 0.7412 | 0.7419 | 0.7559 | 0.6710 | 0.7559 | |
Log Likelihood | –457.1240 | –456.7670 | –451.5860 | – | – | |
AIC | 940.2490 | 941.5340 | 929.1720 | – | – | |
SC | 988.0460 | 993.0090 | 976.9700 | – | – | |
LM | − | 0.7079 | 9.3087 | – | – | |
P of LM | − | 0.4001 | 0.0023 | – | – | |
Robust LM | − | 0.0654 | 8.6661 | – | – | |
P of Robust LM | − | 0.7982 | 0.0032 | – | – |
[1] |
魏华, 高劲松, 段菲菲. 电商直播模式下信息交互对用户参与行为的影响[J]. 情报科学, 2021, 39(4) 148-156.
Wei Hua, Gao Jinsong, Duan Feifei. The impact of information interaction on user engagement behavior in live streaming commerce. Information Science, 2021, 39(4) 148-156.
|
[2] |
Zhang M, Qin F, Wang G A et al. The impact of live video streaming on online purchase intention[J]. The Service Industries Journal, 2020, 40(9-10) 656-681.
|
[3] |
Luo M, Sima F. Research on the online marketing strategy and the trend of developing of “Internet celebrity live broadcast” for shoes and clothes enterprises[J]. The Frontiers of Society, Science and Technology, 2020, 2(13) 54-59.
|
[4] |
Liu L, Aremu E O, Yoo D. Brand marketing strategy of live streaming in mobile era: A case study of tmall platform[J]. Journal of East Asia Management, 2020, 1(1) 65-87.
|
[5] |
Graham M, Hale S, Stephens M. Featured graphic: Digital divide: the geography of Internet access[J]. Environment and Planning A, 2012, 44(5) 1009-1010.
|
[6] |
张英浩, 汪明峰, 计怡村. ICT对城市发展影响的总体特征及其知识图谱——基于人文与经济地理学科视角与CiteSpace计量分析[J]. 中国名城, 2021, 35(3) 27-36.
Zhang Yinghao, Wang Mingfeng, Ji Yicun. The overall characteristics and knowledge structure of the impact of ICT on urban development: Base on the perspective of human and economic geography and citespace measurement analysis. China Ancient City, 2021, 35(3) 27-36.
|
[7] |
Graham M. Warped Geographies of Development: The internet and theories of economic development[J]. Geography Compass, 2008, 2(3) 771-789.
|
[8] |
Wahome M, Graham M. Spatially shaped imaginaries of the digital economy[J]. Information, Communication & Society, 2020, 23(8) 1123-1138.
|
[9] |
汪凡, 汪明峰. 基于格网的淘宝村集聚特征及影响因素分析[J]. 地理科学, 2020, 40(2) 229-237.
Wang Fan, Wang Mingfeng. Spatial aggregation characteristics and influencing factors of Taobao village based on grid in China. Scientia Geographica Sinica, 2020, 40(2) 229-237.
|
[10] |
史坤博, 杨永春, 邵蕊, 等. 中国城市居民C2C网络消费的空间特征分析——兼论技术扩散与效率假说的适用性[J]. 地理科学, 2019, 39(1) 107-115.
Shi Kunbo, Yang Yongchun, Shao Rui et al. Spatial pattern of urban resident’s C2C online consumption in China: Feasibility of innovation diffusion hypothesis and efficiency hypothesis. Scientia Geographica Sinica, 2019, 39(1) 107-115.
|
[11] |
姜洪强, 梅林, 杨立青. 中国淘宝店铺服务质量空间分异及影响因素[J]. 地理科学, 2020, 40(3) 428-436.
Jiang Hongqiang, Mei Lin, Yang Liqing. Spatial differentiation and influencing factors of service quality of electronic shops in China: Taking Taobao stores as an example. Scientia Geographica Sinica, 2020, 40(3) 428-436.
|
[12] |
Boschma R, Coenen L, Frenken K et al. Towards a theory of regional diversification: Combining insights from Evolutionary Economic Geography and Transition Studies[J]. Regional Studies, 2017, 51(1) 31-45.
|
[13] |
Isaksen A, Trippl M. Regional industrial path development in different regional innovation systems: A conceptual analysis[M]. Lund: Lund University, 2014.
|
[14] |
Holmen A K T, Fosse J K. Regional agency and constitution of new paths: A study of agency in early formation of new paths on the west coast of Norway[J]. European Planning Studies, 2017, 25(3) 498-515.
|
[15] |
陈肖飞, 郭建峰, 胡志强, 等. 汽车产业集群网络演化与驱动机制研究——以奇瑞汽车集群为例[J]. 地理科学, 2019, 39(3) 467-476.
Chen Xiaofei, Guo Jianfeng, Hu Zhiqiang et al. The evolution process and driving mechanism of automobile industrial cluster network: Taking Chery cluster as an example. Scientia Geographica Sinica, 2019, 39(3) 467-476.
|
[16] |
Frenken K, Boschma R A. A theoretical framework for evolutionary economic geography: Industrial dynamics and urban growth as a branching process[J]. Journal of Economic Geography, 2007, 7(5) 635-649.
|
[17] |
俞国军, 贺灿飞, 朱晟君. 企业家精神与南昌众创空间涌现——基于演化经济地理学视角[J]. 经济地理, 2020, 40(3) 141-151.
Yu Guojun, He Canfei, Zhu Shengjun. The entrepreneurship and the emergence of shared work spaces in Nanchang from the perspective of evolutionary economic geography. Economic Geography, 2020, 40(3) 141-151.
|
[18] |
Rigby D L. Technological relatedness and knowledge space: Entry and exit of US cities from patent classes[J]. Regional Studies, 2015, 49(11) 1922-1937.
|
[19] |
Neffke F, Henning M, Boschma R. How do regions diversify over time?Industry relatedness and the development of new growth paths in regions[J]. Economic Geography, 2011, 87(3) 237-265.
|
[20] |
汪明峰, 卢姗. 网上零售企业的空间组织研究——以“当当网”为例[J]. 地理研究, 2011, 30(6) 965-976.
Wang Mingfeng, Lu Shan. Exploring the spatial organization of online retailing: A case study of Dangdang.com. Geographical Research, 2011, 30(6) 965-976.
|
[21] |
Mackinnon D, Dawley S, Pike A et al. Rethinking path creation: A geographical political economy approach[J]. Economic Geography, 2019, 95(2) 113-135.
|
[22] |
Grillitsch M. Following or breaking regional development paths: On the role and capability of the innovative entrepreneur[J]. Regional Studies, 2019, 53(5) 681-691.
|
[23] |
李宏彬, 李杏, 姚先国, 等. 企业家的创业与创新精神对中国经济增长的影响[J]. 经济研究, 2009, 44(10) 99-108.
Li Hongbin, Li Xing, Yao Xianguo, et al. Examining the impact of business entrepreneurship and innovation entrepreneurship on economic growth in China. Economic Research Journal, 2009, 44(10) 99-108.
|
[24] |
钱燕. 风险投资对新兴产业发展的影响研究——新三板生物医药企业的证据[J]. 经济问题, 2020(10) 38-45.
Qian Yan. Research on the impact of venture capital on the development of emerging industries: Evidence from NEEQ-listed biopharmaceutical firms. On Economic Problems, 2020(10) 38-45.
|
[25] |
袁振杰, 郭隽万果, 杨韵莹, 等. 中国优质基础教育资源空间格局形成机制及综合效应[J]. 地理学报, 2020, 75(2) 318-331.
Yuan Zhenjie, Guo Junwanguo, Yang Yunying et al. Analysis of the spatial structure, mechanism and social-political effects of the high-quality basic educational resources in China. Acta Geographica Sinica, 2020, 75(2) 318-331.
|
[26] |
Anselin L. Exploratory spatial data analysis in a geocomputational environment[J]. New York:Wiley, 1998: 77-94.
|
[27] |
吴媛媛, 宋玉祥. 中国旅游经济空间格局演变特征及其影响因素分析[J]. 地理科学, 2018, 38(9) 1491-1498.
Wu Yuanyuan, Song Yuxiang. Spatial pattern evolution and influence factors of tourism economy in China. Scientia Geographica Sinica, 2018, 38(9) 1491-1498.
|
[28] |
王劲峰, 廖一兰, 刘鑫. 空间数据分析教程(第二版)[M]. 北京: 科学出版社, 2019.
Wang Jinfeng, Liao Yilan, Liu Xin. Spatial data analysis tutorial(2nd edition)[M]. Beijing: Science Press, 2019.
|
[29] |
张英浩, 汪明峰, 刘婷婷. “全球−地方”视角下机器人制造业新建企业空间演变与区位选择[J]. 工业技术经济, 2021, 40(9) 81-90.
Zhang Yinghao, Wang Mingfeng, Liu Tingting. The spatial evolution characteristics and location selection of newly-built enterprises from the perspective of global-local. Journal of Industrial Technological Economics, 2021, 40(9) 81-90.
|
[30] |
Anselin L, Bera A K, Florax R et al. Simple diagnostic tests for spatial dependence[J]. Regional Science and Urban Economics, 1996, 26(1) 77-104.
|
[31] |
国家统计局. 中国城市统计年鉴 2019[M]. 北京: 中国统计出版社, 2020.
National Bureau of Statistics. China city statistical yearbook 2019. Beijing: China Statistics Press, 2020.
|
[32] |
宋周莺, 虞洋, 祝巧玲, 等. 中国县域网络购物空间格局及其影响因素[J]. 地理研究, 2019, 38(12) 2997-3009.
Song Zhouying, Yu Yang, Zhu Qiaoling et al. Spatial characteristics and influencing factors of E-shopping development in China’s counties. Geographical Research, 2019, 38(12) 2997-3009.
|
/
〈 |
|
〉 |