中国城市群热岛效应时空演变及其影响因素分析
胡楠林(1998-),男,四川泸州人,硕士研究生,主要从事城市生态研究。E-mail: hunanlin@iga.ac.cn |
收稿日期: 2021-09-10
修回日期: 2022-02-23
网络出版日期: 2022-09-20
基金资助
国家自然科学基金项目(42171109)
国家自然科学基金项目(32130068)
中国科学院青年促进会人才项目(2020237)
版权
Spatio-temporal Evolution of Heat Island Effect and Its Driving Factors in Urban Agglomerations of China
Received date: 2021-09-10
Revised date: 2022-02-23
Online published: 2022-09-20
Supported by
National Natural Science Foundation of China(42171109)
National Natural Science Foundation of China(32130068)
Youth Science Fund Project by the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2020237)
Copyright
基于长期不透水面和MODIS地表温度数据,分析2000—2015年中国城市群扩张及热岛效应时空演变,进而综合采用冗余分析(RDA)、线性回归分析和变异分配分析(VPA)等方法,揭示城市群城市热岛效应的驱动机制。结果表明:城市群内建成区面积快速扩张,不透水面比例从2000年2.08%增长到2015年5.33%,且主要集中于珠江三角洲等沿海城市群;2000—2015年,夏季热岛分布较广,且白天强度高于夜晚。东部以及大部分北部城市群如哈长城市群等,降温强度较大,但其夜晚热岛效应在不同程度增强。冬季夜晚比白天热岛分布广、强度高,北方、西北、东部等地区夜晚热岛效应也在增强;自然环境因素显著影响城市群热岛强度,降水对夏季夜晚热岛强度起显著负贡献(22%),纬度越高,冬季夜晚热岛强度也越高。人为因素显著影响夜晚热岛分布和城市群内热岛强度的平衡,城市植被覆盖显著减少夜晚城市群内热岛分布,灯光强度对夏季夜晚热岛强度起显著负贡献(24%),对热岛比例起显著正贡献(27%),人口密度对夏季夜晚热岛强度起显著负贡献(31%);自然环境因素对热岛强度的贡献占主导,而人为干扰因素对热岛比例的贡献占主导。
胡楠林 , 任志彬 , 董禹麟 , 付尧 , 郭玉洁 , 毛之夏 , 常馨悦 . 中国城市群热岛效应时空演变及其影响因素分析[J]. 地理科学, 2022 , 42(9) : 1534 -1545 . DOI: 10.13249/j.cnki.sgs.2022.09.003
Urban agglomeration characterized by compact regional cooperation and frequent human mobility has been an obvious direction of urban and socio-economic development in China. However, in the formation of urban agglomeration, rapid impervious expansion and tremendous anthropogenic heat sources making urban areas hotter, which generates the urban heat island (UHI) effect and associated extreme heat events, threatening public health and sustainable development. Although studies have documented the impact of UHI on the urban environment by using a single urban agglomeration as the research object, there is still a lack of knowledge of the driving mechanism of the spatiotemporal pattern of UHI on the national scale. In this study, we observed the urban expansion and the spatiotemporal pattern of UHI in 19 urban agglomerations of China from 2000 to 2015 by using long-term impervious data and MODIS surface temperature data. Furthermore, by using Redundancy analysis (RDA) and linear regression model with the datasets that represent the nature and socio-economic driving factors, we quantified the driving mechanism of spatiotemporal pattern of UHI for all urban agglomerations. Results show that the impervious surface expanded rapidly with its proportion increased from 2.08% to 5.33% during 2000-2015 in China’s urban agglomerations, concentrating in coastal urban agglomerations such as the Pearl River Delta. The proportion of heat island (PHI) was high and the intensity of heat island (SUHIIagg) was higher in summer nighttime than in daytime. The eastern and numerous of northern urban agglomerations such as Harbin-Changchun had strong cooling capacity in summer, however the SUHIIagg increased in nighttime to varying degrees. Besides, the PHI and the SUHIIagg in winter nighttime was higher than that in daytime. And the SUHIIagg in the north, northwest and east urban agglomerations increased in winter nighttime. We found vegetation was significantly reducing the nighttime PHI, while the precipitation was negatively affecting the SUHIIagg in summer nighttime (22%) and latitude was positively affecting the SUHIIagg in winter nighttime (56%). Meanwhile, the nighttime lights was negatively affecting the SUHIIagg(24%) and positively affecting the PHI (27%) while the population negatively affecting the SUHIIagg in summer nighttime (31%).These show that natural environmental factors dominantly contribute to the SUHIIagg, while the human disturbance factors dominantly contribute to the PHI. These show that the interaction between radiation changes and human activities has an important impact on the nighttime UHI effect in China. Since the urban expansion and immigration keep ongoing, the UHI effect is predicted to be more intense and of longer duration in China. Thus, the pathway to balance the development of urban agglomeration and the mitigation of the urban heat environment is a major challenge for government policymaking in China. This study expands the knowledge of the spatiotemporal UHI change at the national scale, which provides a scientific basis for urban planning, alleviating urban heat challenges, and achieving sustainable development.
表1 数据来源Table 1 Data sources |
数据名称 | 数据来源 | 分辨率 | 时间 |
MODLT1M、MYDLT1M中国 地表温度月合成产品 | http://www.gscloud.cn | 1 km | 2000年、2005年、2010年、 2015年6~8月和12~2月 |
不透水面数据 | http://data.ess.tsinghua.edu.cn/ | 30 m | 2000—2015年 |
降水、气温、人口、NDVI数据 | http://www.resdc.cn/DOI | 1 km | 2015年 |
DEM高程 | http://www.gscloud.cn | 90 m | 2000年 |
夜间灯光数据 | https://ngdc.noaa.gov/eog/viirs/download_ut_mos.html | 500 m | 2015年 |
[1] |
Peng J, Ma J, Liu Q Y. Spatial-temporal change of land surface temperature across 285 cities in China: An urban-rural contrast perspective[J]. Science of the Total Environment, 2018, 635: 487-497.
|
[2] |
United Nations, Department of Economic and Social Affairs, Population Division. World urbanization prospects 2018[EB/OL]. Publications United Nations, 2020-10-16. https://population.un.org/wup/Download/.
|
[3] |
Lin L J, Gao T, Luo M. Contribution of urbanization to the changes in extreme climate events in urban agglomerations across China[J]. Science of the Total Environment, 2020, 744: 140264
|
[4] |
Luber G, Mcgeehin M. Climate change and extreme heat events[J]. American Journal of Preventive Medicine, 2008, 35(5) 429-435.
|
[5] |
姚远, 陈曦, 钱静. 城市地表热环境研究进展[J]. 生态学报, 2018, 38(3) 1134-1147.
Yao Yuan, Chen Xi, Qian Jing. Research progress on the thermal environment of the urban surfaces. Acta Ecologica Sinica, 2018, 38(3) 1134-1147.
|
[6] |
Ren Z, Zhao H, Fu Y. Effects of urban street trees on human thermal comfort and physiological indices: A case study in Changchun City, China[J]. Journal of Forestry Research, 2022, 33: 911-922.
|
[7] |
Zhou D C, Xiao J F, Bonafoni S. Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives[J]. Remote Sensing, 2018, 11(48) 1-36.
|
[8] |
刘晓丽, 方创琳. 城市群资源环境承载力研究进展及展望[J]. 地理科学进展, 2008, 27(5) 35-42.
Liu Xiaoli, Fang Chuanglin. Progress and prospect of study on carrying capacity of resource and environment of city clusters. Progress in Geography, 2008, 27(5) 35-42.
|
[9] |
胡李发, 谢元礼, 崔思颖. 关中平原城市群夏季城市热岛特征及驱动力分析[J]. 中国环境科学, 2021, 41(8) 3842-3852.
Hu Lifa, Xie Yuanli, Cui Siying. Characteristics and driving forces analysis of urban heat island in Guanzhong Plain Urban Agglomeration in Summer. China Environmental Science, 2021, 41(8) 3842-3852.
|
[10] |
Rao P K. Remote sensing of urban" heat islands" from an environmental satellite[J]. Bulletin of the American Meteorological Society, 1972, 53(7) 647-648.
|
[11] |
Weng Q H. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(4) 335-344.
|
[12] |
李元征, 尹科, 周宏轩. 基于遥感监测的城市热岛研究进展[J]. 地理科学进展, 2016, 35(9) 1062-1074.
Li Yuanzheng, Yin Ke, Zhou Hongxuan. Progress in urban heat island monitoring by remote sensing. Progress in Geography, 2016, 35(9) 1062-1074.
|
[13] |
Voogt J A, Oke T R. Thermal remote sensing of urban climates[J]. Remote Sensing of Environment, 2003, 86(3) 370-384.
|
[14] |
Jiménez-Muñoz J C, Sobrino J A, Skoković D. Land surface temperature retrieval methods from landsat-8 thermal infrared sensor data[J]. IEEE Geosci Remote S, 2014, 11(10) 1840-1843.
|
[15] |
李宇, 周德成, 闫章美. 中国84个主要城市大气热岛效应的时空变化特征及影响因子[J/OL]. 环境科学. https://doi.org/10.13227/j.hjkx.202102003, 2021-09-11(1-13).
Li Yu, Zhou Decheng, Yan Zhangmei. Spatiotemporal variations of atmospheric urban heat island effects and the driving factors in 84 major Chinese cities. https://doi.org/10.13227/j.hjkx.202102003, 2021-09-11(1-13).
|
[16] |
沈中健, 曾坚. 1996-2017年闽三角城市群区域热岛时空格局演化分析[J]. 安全与环境学报, 2020, 20(4) 1567-1578.
Shen Zhongjian, Zeng Jian. Analysis of spatiotemporal patterns and evolution of regional thermal islands in Fujian Delta urban agglomeration during decade of 1996-2017. Journal of Safety and Environment, 2020, 20(4) 1567-1578.
|
[17] |
Liu H M, Huang B, Zhan Q M. The influence of urban form on surface urban heat island and its planning implications: Evidence from 1288 urban clusters in China[J]. Sustainable Cities and Society, 2021, 71: 102987
|
[18] |
Zhou D C, Zhao S Q, Liu S G. Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers[J]. Remote Sensing of Environment, 2014, 152: 51-61.
|
[19] |
郑亦佳, 刘树华, 何萍. 滇中地区夏季城市热岛效应的数值模拟研究[J]. 北京大学学报(自然科学版), 2017, 53(4) 639-651.
Zheng Yijia, Liu Shuhua, He Ping. Numerical study of summertime urban heat island in Dianzhong. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(4) 639-651.
|
[20] |
Li Y Z, Wang L, Liu M. Associated determinants of surface urban heat islands across 1449 cities in China[J]. Advances in Meteorology, 2019, 2019(12) 1-14.
|
[21] |
王美雅, 徐涵秋. 中国大城市的城市组成对城市热岛强度的影响研究[J]. 地球信息科学学报, 2018, 20(12) 1787-1798.
Wang Meiya, Xu Hanqiu. Analyzing the influence of urban forms on surface urban heat islands intensity in Chinese mega cities. Journal of Geo-information Science, 2018, 20(12) 1787-1798.
|
[22] |
Zhao H, Wang Z, Tan J. Spatiotemporal characteristics of urban surface temperature and its relationship with landscape metrics and vegetation cover in rapid urbanization region[J]. Complexity, 2020, 7892362: 1-12.
|
[23] |
潘明慧, 兰思仁, 朱里莹. 景观格局类型对热岛效应的影响——以福州市中心城区为例[J]. 中国环境科学, 2020, 40(6) 2635-2646.
Pan Minghui, Lan Siren, Zhu Liying. Influence of landscape pattern types on heat island effect over central Fuzhou City. China Environmental Science, 2020, 40(6) 2635-2646.
|
[24] |
樊智宇, 詹庆明, 刘慧民. 武汉市夏季城市热岛与不透水面增温强度时空分布[J]. 地球信息科学学报, 2019, 21(2) 226-235.
Fan Zhiyu, Zhan Qingming, Liu Huimin. Spatial-temporal distribution of urban heat island and the heating effect of impervious surface in summer in Wuhan. Journal of Geo-information Science, 2019, 21(2) 226-235.
|
[25] |
Asgarian A, Amiri B J, Sakieh Y. Assessing the effect of green cover spatial patterns on urban land surface temperature using landscape metrics approach[J]. Urban Ecosystems, 2015, 18(1) 209-222.
|
[26] |
方创琳. 《中国城市群地图集》[M]. 北京: 科学出版社, 2020.
Fang Chuanglin. Atlas of Chinese urban agglomeration. Beijing: Science Press, 2020.
|
[27] |
中共中央国务院. 国家新型城镇化规划(2014-2020)[EB/OL]. 新华社. http://www.gov.cn/zhengce/2014-03/16/content_2640075.html.
State Council of China. National new urbanization plan (2014-2020). Xinhua News Agency. http://www.gov.cn/zhengce/2014-03/16/content_2640075.html.
|
[28] |
陈颖锋, 王玉宽, 傅斌. 成渝城市群城镇化的热岛效应[J]. 生态学杂志, 2015, 34(12) 3494-3501.
Chen Yingfeng, Wang Yukuan, Fu Bin. Heat island effect during the process of urbanization in Chengdu-Chongqing urban agglomeration. Chinese Journal of Ecology, 2015, 34(12) 3494-3501.
|
[29] |
邓玉娇, 杜尧东, 王捷纯. 粤港澳大湾区城市热岛时空特征及驱动因素[J]. 生态学杂志, 2020, 39(8) 2671-2677.
Deng Yujiao, Du Yaodong, Wang Jiechun. Spatiotemporal characteristics and driving factors of urban heat islands in Guangdong-Hong Kong-Macao Greater Bay Area. Chinese Journal of Ecology, 2020, 39(8) 2671-2677.
|
[30] |
杨浩, 王子羿, 王婧. 京津冀城市群土地利用变化对热环境的影响研究[J]. 自然资源学报, 2018, 33(11) 1912-1925.
Yang Hao, Wang Ziyi, Wang Jing. Study on the influence of land use change on the thermal environment in Beijing-Tianjin-Hebei Urban Agglomeration. Journal of Natural Resources, 2018, 33(11) 1912-1925.
|
[31] |
潘竟虎, 董磊磊, 王娜云. 兰西城市群热环境格局多尺度研究[J]. 国土资源遥感, 2018, 30(2) 138-146.
Pan Jinghu, Dong Leilei, Wang Nayun. A multiscale study of thermal environment pattern in Lanzhou-Xining agglomeration. Remote Sensing for Land and Resources, 2018, 30(2) 138-146.
|
[32] |
林中立, 徐涵秋, 陈弘. 中国东部沿海三大城市群热岛变化及其与城市群发展的关系[J]. 环境科学研究, 31(10): 1695-1704.
Lin Zhongli, Xu Hanqiu, Chen Hong. Urban heat island change and its relationship to the urbanization of three major urban agglomerations in China’s eastern coastal region. Research of Environmental Sciences, 2018, 31(10): 1695-1704.
|
[33] |
Gong P, Li X, Wang J. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018[J]. Remote Sensing of Environment, 2019: 236
|
[34] |
乔治, 黄宁钰, 徐新良. 2003—2017年北京市地表热力景观时空分异特征及演变规律[J]. 地理学报, 2019, 74(3) 475-489.
Qiao Zhi, Huang Ningyu, Xu Xinliang. Spatio-temporal pattern and evolution of the urban thermal landscape in metropolitan Beijing between 2003 and 2017. Acta Geographic Sinica, 2019, 74(3) 475-489.
|
[35] |
Peng J, Xie P, Liu Y. Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region[J]. Remote Sensing of Environment, 2016, 173: 145-155.
|
[36] |
Sun Y W, Gao C, Li J L. Evaluating urban heat island intensity and its associated determinants of towns and cities continuum in the Yangtze River Delta Urban Agglomerations [J]. Sustainable Cities and Society, 2019, 50(101659): 1-9.
|
[37] |
Chen L, Ren C Y, Zhang B. Quantifying urban land sprawl and its driving forces in Northeast China from 1990 to 2015[J]. Sustainability, 2018, 10(188) 1-18.
|
[38] |
Kuang W, Chi W, Lu D. A comparative analysis of megacity expansions in China and the U. S: Patterns, rates and driving forces[J]. Landscape & Urban Planning, 2014, 132: 121-135.
|
[39] |
Kuang W, Zhang S, Li X. A 30 m resolution dataset of China’s urban impervious surface area and green space, 2000–2018[J]. Earth System Science Data, 2021, 13(1) 63-82.
|
[40] |
Fang J Y, Chen A P, Peng C H. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science, 2001, 292(5525) 2320-2322.
|
[41] |
Wang F, Ge Q, Wang S. A new estimation of urbanization’s contribution to the warming trend in China[J]. Journal of Climate, 2015, 28(22) 8923-8938.
|
[42] |
Christen A, Vogt R. Energy and radiation balance of a central European city[J]. International Journal of Climatology, 2004, 24: 1395-1421.
|
[43] |
Uwe W, Wilhelm K. The dependence of the urban heat island intensity on latitude: A statistical approach[J]. Meteorologische Zeitschrift, 2005, 14(5) 677-686.
|
[44] |
Zhao L, Lee X, Smith R B. Strong contributions of local background climate to urban heat islands[J]. Nature, 2014, 511(7508) 216
|
[45] |
曹畅, 李旭辉, 张弥. 中国城市热岛时空特征及其影响因子的分析[J]. 环境科学, 2017, 38(10) 3987-3997.
Cao Chang, Li Xuhui, Zhang Mi. Correlation analysis of the urban heat island effect and its impact factors in China. Environmental Science, 2017, 38(10) 3987-3997.
|
[46] |
Wang P, Luo M, Liao W. Urbanization contribution to human perceived temperature changes in major urban agglomerations of China[J]. Urban Climate, 2021, 38(100910) 1-13.
|
/
〈 |
|
〉 |