洪灾情景下食品类物资供需分配及配送路径优化——以上海市奉贤区为例
李亚琴(1992—),女,甘肃民勤人,硕士研究生,主要研究区域环境与灾害风险管理。E-mail: yaqin_li@163.com |
收稿日期: 2023-08-11
修回日期: 2023-11-20
网络出版日期: 2024-03-18
基金资助
国家自然科学基金项目资助(72074151)
版权
Optimization of the supply and demand allocation and distribution path of food supplies under flood scenarios: A case study in Fengxian District, Shanghai
Received date: 2023-08-11
Revised date: 2023-11-20
Online published: 2024-03-18
Supported by
National Natural Science Foundation of China(72074151)
Copyright
应急物资的供需分配和物流优化是应急物资管理决策中的重要支撑。本文基于最优供需分配模型,构建了基于供需分析的物资供应点分配方法。该方法考虑了市场储备点需同时对受灾需求点和原有需求点进行保障性物资供给的约束条件,相比传统方法能进一步提高物资供需分析的合理性与准确性。在物资供应点分配的基础上,构建了洪灾情景下的应急物资配送路径优化方法。该方法基于真实道路网络,利用“度”“方形集聚系数”及“道路设计日交通量”评估路段可靠性,并充分考虑洪涝灾害对道路通行时间的影响,以“路径行程时间最短”和“路径可靠性最高”为目标,采用启发式算法进行最优路径的求解。以上海市奉贤区为研究区开展案例研究。通过市场与政府协同供应的多种方案情景的对比分析,发现G方案(政府全供应)配送经历时间久、总花费时间成本多,可能导致应急救援任务超时,S方案(市场全供应)配送效率低,易导致人力、运力资源浪费,而S1500方案(由市场供应1 500 m覆盖范围内的避难场所,由政府供应剩余的避难场所)则是同时适合案例中2种洪灾情景下3类物资(饮用水、大米、婴儿奶粉)的协同供应方案。该研究结果可为研究区相关部门的应急救援救助提供决策支持。本文提出的方法能够为其他地区的相关研究提供方法借鉴。
李亚琴 , 於家 , 周泱 , 吴航星 , 张敏 , 温家洪 . 洪灾情景下食品类物资供需分配及配送路径优化——以上海市奉贤区为例[J]. 地理科学, 2024 , 44(4) : 573 -585 . DOI: 10.13249/j.cnki.sgs.20230850
The supply and demand allocation and logistics optimization of emergency materials are important support for emergency materials management and decision-makings. This study proposes a supply-demand analysis based material supply point allocation method, which on the basis of the optimal supply and demand allocation model. This method takes into account the constraint condition that the market reserve point must simultaneously supply both the affected and original demand points with supportive materials. Compared to traditional methods, this approach further improves the rationality and accuracy of material supply and demand analysis. Based on the allocation of material supply points, a method for optimizing the emergency material distribution path under flood scenarios is further developed. This method is based on real road networks, using “Degree” “Squares Clustering Coefficient” and “Road Design Daily Traffic Volume” to evaluate the reliability of road sections, and fully considers the impact of the flood disaster on the road travel time. It aims to achieve the shortest path travel time and the highest path reliability, using heuristic algorithms to solve the optimal path. A case study was conducted in Fengxian District, Shanghai, China. Through comparative analysis of multiple scheme scenarios of collaborative supply between the market and government, it was found that the G scheme (100% government supply) required a longer distribution time and resulted in a higher overall time cost, which could lead to the timeout situation for emergency response missions. The S plan (100% market supply) had a lower delivery efficiency and was prone to waste of human and transportation resources. However, the S1500 scheme (the market supplies the shelters within the 1 500 m coverage range and the government supplies the remaining shelters) was a collaborative supply scheme that was suitable for all 3 types of materials (water, rice, milk (infant formula)) in the case study. The research results can provide decision supporting for emergency rescue and relief efforts of relevant departments in the study area. The methods proposed in this paper can provide methodological references for related studies in other regions.
表1 洪灾情景下上海市奉贤区食品类物资每日需求量和市场储备量/kgTable 1 Daily demand and supply of various food materials under flood scenarios in the Fengxian District of Shanghai |
物资量 | 婴儿奶粉 | 大米 | 饮用水 | |
S1情景 | 受灾人口需求 | 745 | 79214 | 183985 |
非受灾人口需求 | 6552 | 656022 | 1527323 | |
市场储备 | 13135 | 9748741 | 30015398 | |
S2情景 | 受灾人口需求 | 218 | 23734 | 55026 |
非受灾人口需求 | 7079 | 711502 | 1656282 | |
市场储备 | 14422 | 10986406 | 33914924 | |
每日物资需求总量 | 7297 | 735236 | 1711308 |
图3 上海市奉贤区市场储备点对避难场所需求的覆盖能力Fig. 3 Ability of market reserve points to cover the food materials for the demand in shelters in the Fengxian District of Shanghai |
表2 洪灾情景下上海市奉贤区不同目标的物资配送路径规划结果Table 2 Schemed results of material distribution paths with different objectives under the flood scenario in the Fengxian District of Shanghai |
洪灾情景 | 统计量 | 距离最短路径 | 时间最短路径 | 最佳路径 |
S1 | 总距离/m | 280575 | 344523 | 345287 |
总时间/s | 55537 | 42597 | 42695 | |
可靠性最低值 | 0.039 | 0.039 | 0.039 | |
可靠性均值 | 0.166 | 0.167 | 0.170 | |
S2 | 总距离/m | 264822 | 300605 | 300192 |
总时间/s | 33415 | 28227 | 28236 | |
可靠性最低值 | 0.039 | 0.039 | 0.039 | |
可靠性均值 | 0.163 | 0.177 | 0.178 |
[1] |
Edwards B, Gray M, Borja J B. Measuring natural hazard-related disasters through self-reports[J]. International Journal of Disaster Risk Science, 2021, 12(4): 540-552.
|
[2] |
Pradhananga R, Mutlu F, Pokharel S et al. An integrated resource allocation and distribution model for pre-disaster planning[J]. Computers & Industrial Engineering, 2016, 91: 229-238.
|
[3] |
林勇, 汪贻生, 肖骅, 等. 基于社会成本的应急物资政企协同预置储备优化[J]. 物流技术, 2021, 40(9): 43-49+56.
Lin Yong, Wang Yisheng, Xiao Hua et al. Optimization of government-enterprise collaborative emergency reserves based on social cost. Logistics Technology, 2021, 40(9): 43-49+56.
|
[4] |
Geng J, Hou H, Geng S. Optimization of warehouse location and supplies allocation for emergency rescue under joint government-enterprise cooperation considering disaster victims’ distress perception[J]. Sustainability, 2021, 13(19): 10560
|
[5] |
Liu J, Schonfeld P M, Peng Q et al. Measures of travel reliability on an urban rail transit network[J]. Journal of Transportation Engineering, Part A: Systems, 2020, 146(6): 04020037
|
[6] |
韩会鹏. 顾及路况的应急物资调度方法[D]. 武汉: 武汉大学, 2017.
Han Huipeng. Research on emergency materials scheduling considering road-network situation. Wuhan: Wuhan University, 2017.
|
[7] |
Wang W, Guo R. Travel time reliability of highway network under multiple failure modes[J]. Sustainability, 2022, 14(12): 7256
|
[8] |
Fujita M, Wakabayashi H. Estimation of link reliability under natural disaster environment[J]. Transportation Research Procedia, 2021, 52: 597-604.
|
[9] |
张洪鑫, 陈慧婷, 陆砚池, 等. 多情景洪水灾害对城市道路拓扑特征影响研究——以武汉市中心城区为例[J/OL]. 地理科学, 2023, 43(8): 1471-1483. doi:10.13249/j.cnki.sgs.2023.08.016.
Zhang Hongxin, Chen Huiting, Lu Yanchi et al. Urban road network topological characterization of multi-scenario flooding impacts: A case study of Wuhan Metropolitan Region. Scientia Geographica Sinica, 2023, 43(8): 1471-1483. doi:10.13249/j.cnki.sgs.2023.08.016.
|
[10] |
张爽. 珠海市香洲城区洪涝灾害模拟及行车影响仿真[D]. 邯郸: 河北工程大学, 2021.
Zhang Shuang. Simulation of flood disaster and the effect on travel speed in Xiangzhou District of Zhuhai. Handan: Hebei University of Engineering, 2021.
|
[11] |
Su B, Huang H, Li Y. Integrated simulation method for waterlogging and traffic congestion under urban rainstorms[J]. Natural Hazards, 2016, 81(1): 23-40.
|
[12] |
Pregnolato M, Ford A, Wilkinson S M et al. The impact of flooding on road transport: A depth-disruption function[J]. Transportation Research Part D: Transport and Environment, 2017, 55: 67-81.
|
[13] |
Choo K S, Kang D H, Kim B S. Impact assessment of urban flood on traffic disruption using rainfall-depth-vehicle speed relationship[J]. Water, 2020, 12(4): 926
|
[14] |
杜磊, 杨晓宽. 不同道路积水情况对交通影响及造成损失的研究[C]//中国土木工程学会. 科技创新 绿色交通——第十一次全国城市道路交通学术会议论文集, 2011: 389-393.
Du Lei, Yang Xiaokuan. Research on the impact of different road waterlogging conditions on traffic and resulting losses. In: China Civil Engineering Society. Technological innovation and green transportation-proceedings of the 11th national urban road traffic academic conference. China Civil Engineering Society, 2011: 389-393.
|
[15] |
Zhang X, Yu J, Chen Y et al. Supply-demand analysis of urban emergency shelters based on spatiotemporal population estimation[J]. International Journal of Disaster Risk Science, 2020, 11(4): 519-537.
|
[16] |
Ozsoydan F B, Gölcük İ. A hybridisation of linear programming and genetic algorithm to solve the capacitated facility location problem[J]. International Journal of Production Research, 2023, 61(10): 3331-3349.
|
[17] |
翟石艳, 何新新, 孔云峰, 等. 基于最优供需分配的公共设施空间可达性分析[J]. 地理学报, 2022, 77(4): 1028-1038.
Zhai Shiyan, He Xinxin, Kong Yunfeng et al. Measuring the spatial accessibility of public services by optimal supply-demand allocation. Acta Geographica Sinica, 2022, 77(4): 1028-1038.
|
[18] |
王建仁, 马鑫, 段刚龙. 改进的K-means聚类k值选择算法[J]. 计算机工程与应用, 2019, 55(8): 27-33.
Wang Jianren, Ma Xin, Duan Ganglong. Improved K-means clustering k-value selection algorithm. Computer Engineering and Applications, 2019, 55(8): 27-33.
|
[19] |
Smith G P, Modra B D, Felder S. Full-scale testing of stability curves for vehicles in flood waters[J]. Journal of Flood Risk Management, 2019, 12(S2): e12527
|
[20] |
Al-Qadami E H H, Mustaffa Z, Al-Atroush M E et al. A numerical approach to understand the responses of passenger vehicles moving through floodwaters[J]. Journal of Flood Risk Management, 2022, 15(4): e12828
|
[21] |
Kramer M, Terheiden K, Wieprecht S. Safety criteria for the traffic ability of inundated roads in urban floodings[J]. International Journal of Disaster Risk Reduction, 2016, 17: 77-84.
|
[22] |
Rivera-Royero D, Galindo G, Jaller M et al. Road network performance: A review on relevant concepts[J]. Computers & Industrial Engineering, 2022: 107927.
|
[23] |
Aric A Hagberg, Daniel A Schult, Pieter J Swart. Exploring network structure, dynamics, and function using NetworkX[C]//Gäel Varoquaux et al. Proceedings of the 7th Python in science conference (SciPy2008). Pasadena, CA USA, 2008: 11-15.
|
[24] |
Zhang P, Wang J, Li X et al. Clustering coefficient and community structure of bipartite networks[J]. Physica A: Statistical Mechanics and Its Applications, 2008, 387(27): 6869-6875.
|
[25] |
交通运输部. 公路工程技术标准(JTGB01-2014)[S]. 北京: 人民交通出版社, 2014.
Ministry of Transport. Technical standard of highway engineering (JTGB01-2014). Beijing: China Communication Press, 2014.
|
[26] |
Fleischmann M. MOMEPY: Urban morphology measuring toolkit[J]. Journal of Open Source Software, 2019, 4(43): 1807
|
[27] |
王晶, 易显强, 朱建明. 考虑道路修复的应急资源配送可靠路径选择问题研究[J]. 运筹与管理, 2016, 25(6): 99-104.
Wang Jing, Yi Xianqiang, Zhu Jianming. Research on reliable path selection for emergency resources distribution considering the road repair. Operations Research and Management Science, 2016, 25(6): 99-104.
|
[28] |
Yen J Y. Finding the k shortest loopless paths in a network[J]. Management Science, 1971, 17(11): 712-716.
|
[29] |
赵炳巍, 贾峰, 曹岩,等. 基于模拟退火算法的人工势场法路径规划研究[J]. 计算机工程与科学, 2022, 44(4): 746-752.
Zhao Bingwei, Jia Feng, Cao Yan et al. Path planning of artificial potential field method based on simulated annealing algorithm. Computer Engineering & Science, 2022, 44(4): 746-752.
|
[30] |
姜丽, 於家, 温家洪, 等. 土地利用变化情景下杭州湾北岸极端洪灾风险评估[J]. 地理科学进展, 2021, 40(8): 1355-1370.
Jiang Li, Yu Jia, Wen Jiahong et al. Risk assessment of extreme flood in the north bank of the Hangzhou Bay under land use change scenarios. Progress in Geography, 2021, 40(8): 1355-1370.
|
[31] |
郭元, 王路瑶, 陈能志, 等. 极端降水下的城市地表–地下空间洪涝过程模拟[J]. 水科学进展, 2023, 34(2): 209-217.
Guo Yuan, Wang Luyao, Chen Nengzhi et al. Simulation of the flood process in urban surface-underground space under extreme rainfall. Advances in Water Science, 2023, 34(2): 209-217.
|
[32] |
江雨瑶. 自然灾害情景下上海市食品类应急物资的供需分析[D]. 上海: 上海师范大学, 2018.
Jiang Yuyao. Supply and demand analysis of food emergency supplies in Shanghai under natural disaster scenarios. Shanghai: Shanghai Normal University, 2018.
|
[33] |
全国国土资源标准化技术委员会. 土地利用现状分类(GB/T21010-2017)[S]. 北京: 中国标准出版社, 2017.
Standardization Administration of the People’s Republic of China. Current land use classification (GB/T21010-2017). Beijing: Standards Press of China, 2017.
|
[34] |
工业和信息化部. 汽车、挂车及汽车列车外廓尺寸、轴荷及质量限值(GB1589-2016)[S]. 北京: 中国标准出版社, 2016.
Ministry of Industry and Information Technology. Limits of dimensions, axle load and masses for motor vehicles, trailers and combination vehicles (GB1589-2016). Beijing: Standards Press of China, 2016.
|
[35] |
Boonmee C, Arimura M, Asada T. Facility location optimization model for emergency humanitarian logistics[J]. International Journal of Disaster Risk Reduction, 2017, 24: 485-498.
|
/
〈 |
|
〉 |