CMIP6耦合模式对青藏高原积雪的未来预估
陈涛(1983—),男,湖北潜江人,副高级工程师,硕士,主要从事青藏高原气候研究。E-mail: tibet_ct@163.com |
收稿日期: 2023-01-22
修回日期: 2023-08-12
网络出版日期: 2024-05-20
基金资助
国家自然科学基金联合基金(U23A2006)
中国气象局西南区域气象中心创新团队基金(XNQYCXTD-202201)
中国铁路总公司科技研究开发计划系统性重大项目(P2018T006)
中央引导地方项目(XZ202102YD0012C)
西藏自治区自然科学基金资助()
版权
CMIP6 projected changes in snow cover in the Qinghai-Tibet Plateau
Received date: 2023-01-22
Revised date: 2023-08-12
Online published: 2024-05-20
Supported by
Joint Program of National Natural Science Foundation of China(U23A2006)
Innovation Team Fund of Southwest Regional Meteorological Center, China Meteorological Administratio(XNQYCXTD-202201)
Systematic Major Project of Science and Technology Research and Development Plan of China National Railway Group Co., Ltd(P2018T006)
Central Guiding Local Project(XZ202102YD0012C)
Natural Science Foundation of Xizang Autonomous Region()
Copyright
基于第六次国际耦合模式比较计划(CMIP6)的历史模拟试验以及情景预估试验数据,分析了21世纪中(2035—2064年)、后期(2070—2099年)青藏高原积雪相对于参考期(1985—2014年)的变化。结果表明:相对于参考期,21世纪中、后期青藏高原平均年积雪日数、平均积雪期均表现为减少,减少幅度总体随着人为辐射强迫的增加而加大;除低强迫情景外,21世纪后期的减少幅度均大于21世纪中期;空间上总体表现为青藏高原东南部的减少幅度大于西北部。21世纪中、后期青藏高原积雪初日均表现为推迟、积雪终日均表现为提前,积雪初日推迟天数是积雪终日提前天数的1.5~2.0倍;人为辐射强迫越高,积雪初(终)日推迟(提前)天数越多;相同情景下21世纪后期积雪初(终)日推迟(提前)天数均多于21世纪中期。降雪(气温)与年积雪日数呈正(负)相关;随着人为辐射强迫的增加,降雪对年积雪日数的相对贡献率总体呈增加趋势;空间特征表现为降雪(气温)对青藏高原南部和北部(东部和西部)的年积雪日数的相对贡献更大。7—12月降雪的减少幅度大于1—6月,这可能是积雪初日推迟天数多于积雪终日提前天数的重要原因。不同情景下青藏高原未来积雪变化差异明显,由此可见,控制温室气体排放对减缓未来青藏高原积雪的减少速率至关重要。
陈涛 , 高歌 , 杜晓辉 , 陈华 . CMIP6耦合模式对青藏高原积雪的未来预估[J]. 地理科学, 2024 , 44(5) : 901 -910 . DOI: 10.13249/j.cnki.sgs.20220844
Snow cover changes in the middle (2035—2064) and end (2070—2099) of 21st century are investigated over the Qinghai-Tibet Plateau based on the Historical data and ScenarioMIP data of the Coupled Model Intercomparison Project Phase 6 (CMIP6). Compare with the reference period (1985—2014), the mean annual snow cover days and mean snow duration decrease during the middle and end of the 21st century over the Qinghai-Tibet Plateau, and the overall reduction are more pronounce with the increase of greenhouse gas emission concentration; the reduction in the late-21st century is more pronounced compare to the mid-21st century except for the low emission scenario; Spatially, the decrease in the southeast of the Qinghai-Tibet Plateau is more severe than that in the northwest. The snow onset date is delayed and the snow end date is advanced in the middle and late 21st century, the days of former is 1.5-2.0 times that of the latter; The more greenhouse gas emissions the more days the snow onset (end) date is delayed (advanced); The changes of the snow onset date and the snow end date are more pronounced in the late 21st century. Snowfall (temperature) is positively (negatively) correlated with the annual snow cover days; Generally ,the relative contribution rate of snowfall to the annual snow cover days increases with the increase of greenhouse gas emission concentration; Spatially, snowfall (temperature) contributes more to the annual snow cover days in the southern and northern (east and west) parts of the Qinghai-Tibet Plateau. Decrease in snowfall from July to December is greater than from January to June, which may be the reason why the days of snow onset date is delayed more than the days of snow end date is advanced. There are great differences in the future snow cover changes over the Qinghai-Tibet Plateau under different scenarios, so controlling greenhouse gas emissions is crucial to slowing down the future snow cover reduction rate over Qinghai-Tibet Plateau.
表1 CMIP6模式列表以及模式筛选结果Table 1 CMIP6 models and results of models filtering |
序号 | 模式名称 | 机构,国家/地区 | 标称分 辨率/km | 空间相关 | 变化速率 | |||
雪水当量 | 积雪日数 | 雪水当量/(mm/10a) | 积雪日数/(d/10a) | |||||
注:*表示筛选后的模式。 | ||||||||
1 | ACCESS-CM2* | CSIRO-ARCCSS,澳大利亚 | 250 | 0.50 | 0.34 | −16.60 | −4.08 | |
2 | ACCESS-ESM1-5 | CSIRO,澳大利亚 | 250 | 0.45 | 0.33 | −0.03 | 1.05 | |
3 | AWI-CM-1-1-MR* | AWI,德国 | 100 | 0.31 | 0.46 | −1.18 | −8.84 | |
4 | BCC-CSM2-MR | BBC,中国 | 100 | 0.11 | 0.30 | −3.65 | −8.08 | |
5 | CanESM5 | CCCMA,加拿大 | 500 | −0.12 | 0.18 | −206.90 | −14.01 | |
6 | EC-Earth3* | EC-Earth-Consortium,欧洲 | 100 | 0.56 | 0.59 | −1.19 | −8.61 | |
7 | GFDL-ESM4 | GFDL,美国 | 100 | 0.46 | 0.63 | 0.86 | 1.27 | |
8 | INM-CM4-8* | INM,俄罗斯 | 100 | 0.22 | 0.33 | −2.02 | −6.57 | |
9 | INM-CM5-0* | INM,俄罗斯 | 100 | 0.18 | 0.31 | −0.98 | −4.48 | |
10 | IPSL-CM6A-LR* | IPSL,法国 | 250 | 0.17 | 0.39 | −7.04 | −3.60 | |
11 | MIROC6* | MIROC,日本 | 250 | 0.19 | 0.34 | −1.19 | −4.36 | |
12 | MPI-ESM1-2-HR* | MPI,德国 | 100 | 0.32 | 0.48 | −0.45 | −6.93 | |
13 | MPI-ESM1-2-LR* | MPI,德国 | 250 | 0.20 | 0.37 | −0.10 | −1.66 | |
14 | MRI-ESM2-0 | MRI,日本 | 100 | 0.46 | 0.46 | 0.89 | −1.22 |
表2 青藏高原21世纪中、后期平均积雪初、终日的变化Table 2 Changes in the mean snow onset date and mean snow end date in the mid and end 21st century in the Qinghai-Tibet Plateau |
时段 | SSPs | 积雪初日变化/d | 积雪终日变化/d |
注“±”之后为模式标准差,*表示结果具有高信度。 | |||
21世纪中期 | SSP126 | 10.54 ±8.63 | −6.30* ±2.38 |
SSP245 | 13.33* ±9.21 | −7.62* ±2.81 | |
SSP370 | 14.74* ± 8.57 | −7.86* ± 2.92 | |
SSP585 | 15.75* ± 9.70 | −9.72* ±3.19 | |
21世纪后期 | SSP126 | 11.41 ±10.55 | −6.74* ±3.52 |
SSP245 | 17.57* ±12.57 | −11.58* ±3.75 | |
SSP370 | 26.25* ± 15.28 | −16.47* ±4.11 | |
SSP585 | 31.98* ± 16.47 | −20.79* ± 5.88 |
表3 年降雪量、年平均气温与年积雪日数的偏相关系数以及对年积雪日数的相对贡献率Table 3 The partial correlation coefficient between the annual snowfall, the annual mean temperature and the annual snow days and relative contribution rate of annual snowfall to the annual snow days |
时段 | SSPs | 偏相关系数 | 相对贡献率 | ||
降雪(剔除气温) | 气温(剔除降雪) | 降雪 | |||
注:参考期指1985—2014年;“±”之后为模式标准差;*表示结果具有高信度。 | |||||
参考期 | / | 0.53 ±0.16 | −0.56*±0.18 | 0.48±0.20 | |
21世纪中期 | SSP126 | 0.52* ±0.18 | −0.58* ±0.15 | 0.46* ±0.17 | |
SSP245 | 0.60* ±0.14 | −0.57* ±0.14 | 0.52±0.14 | ||
SSP370 | 0.63* ±0.13 | −0.48* ±0.15 | 0.60* ±0.13 | ||
SSP585 | 0.64* ±0.12 | −0.45* ±0.14 | 0.62* ±0.13 | ||
21世纪后期 | SSP126 | 0.54* ±0.20 | −0.54* ±0.13 | 0.49 ±0.18 | |
SSP245 | 0.53 ±0.19 | −0.57* ±0.21 | 0.47 ±0.19 | ||
SSP370 | 0.59* ±0.14 | −0.52* ±0.20 | 0.54±0.20 | ||
SSP585 | 0.63* ±0.08 | −0.53* ±0.15 | 0.57* ±0.13 |
[1] |
Blanford H F. On the connexion of the Himalaya snowfall with dry winds and seasons of drought in India[J]. Proceedings of the Royal Society of London, 1984, 37(232-234): 3-22.
|
[2] |
韦志刚, 罗四维, 董文杰, 等. 青藏高原积雪资料分析及其与我国夏季降水的关系[J]. 应用气象学报, 1998, 9(Suppl.): 39-46.
Wei Zhigang, Luo Siwei, Dong Wenjie et al. Snow cover data on Qinghai-Xizang Plateau and its correlation with summer rainfall in China. Quarterly Journal of Applied Meteorology, 1998, 9(Suppl.): 39-46.
|
[3] |
马耀明, 胡泽勇, 田立德, 等. 青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J]. 地球科学进展 , 2014, 29 (2):207-215.
Ma Yaoming, Hu Zeyong, Tian Lide et al. Study progresses of the Tibet Plateau climate system change and mechanism of its impact on East Asia. Advances in Earth Science, 2014, 29(2): 207-215.
|
[4] |
吴国雄, 刘屹岷, 何编, 等. 青藏高原感热气泵影响亚洲夏季风的机制[J]. 大气科学, 2018, 42(3): 488-504.
Wu Guoxiong, Liu Yimin, He Bian et al. Review of the impact of the Tibetan Plateau sensible heat driven air-pump on the Asian summer monsoon. Chinese Journal of Atmospheric Sciences, 2018, 42(3): 488-504.
|
[5] |
程国栋, 赵林, 李韧, 等. 青藏高原多年冻土特征、变化及影响[J]. 科学通报, 2019, 64: 2783-2795.
Cheng Guodong, Zhao Lin, Li Ren et al. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau. Chinese Science Bulletin, 2019, 64: 2783-2795.
|
[6] |
车涛, 郝晓华, 戴礼云, 等. 青藏高原积雪变化及其影响[J]. 中国科学院院刊, 2019, 34(11): 1247-1253.
Che Tao, Hao Xiaohua, Dai Liyun et al. Snow variation and its impacts over the Qinghai-Tibet Plateau. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1247-1253.
|
[7] |
钟歆玥, 康世昌, 史艳梅. 第三极和北极的积雪变化与影响[J]. 自然杂志, 2020, 42(5): 407-412.
Zhong Xinyue, Kang Shichang, Shi Yanmei. The changes and impacts of snow cover in the Third Pole and the Arctic. Chinese Journal of Nature, 2020, 42(5): 407-412.
|
[8] |
丁一汇, 王会军. 近百年中国气候变化科学问题的新认识[J]. 科学通报, 2016, 61: 1029-1041.
Ding Yihui, Wang Huijun. Newly acquired knowledge on the scientific issues related to climate change over the recent 100 years in China. Chinese Science Bulletin, 2016, 61: 1029-1041.
|
[9] |
周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5): 445-456.
Zhou Tianjun, Zou Liwei, Chen Xiaolong. Commentary on the Coupled Model Intercomparison Project Phasa 6 (CMIP6). Climate Change Research, 2019, 15(5): 445-456.
|
[10] |
Shi H X, Wang C H. Projected 21st century changes in snow water equivalent over Northern Hemisphere landmasses from the CMIP5 model ensemble[J]. The Cryosphere, 2015, 9(5): 1943-1953.
|
[11] |
Brutel-Vuilmet C, Menegoz M, Krinner G. An analysis of present and future seasonal Northern Hemisphere land snow cover simulated by CMIP5 coupled climate models[J]. The Cryosphere, 2013, 7(1): 67-80.
|
[12] |
朱献, 董文杰. CMIP5 耦合模式对北半球 3—4 月积雪面积的历史模拟和未来预估[J]. 气候变化研究进展. 2013, 9(3): 173-180.
Zhu Xian, Dong Wenjie. Evaluation and projection of northern hemisphere March-April snow covered area simulated by CMIP5 coupled climate models. Climate Change Research, 2013, 9(3): 173-180.
|
[13] |
夏坤, 王斌. 欧亚大陆积雪覆盖率的模拟评估及未来情景预估[J]. 气候与环境研究, 2015, 20(1): 41-52.
Xia Kun, Wang Bin. Evaluation and projection of snow cover fraction over Eurasia. Climatic and Environmental Research, 2015, 20(1): 41-52.
|
[14] |
Wei Z, Dong W. Assessment of simulations of snow depth in the Qinghai-Tibetan Plateau using CMIP5 multi-models[J]. Arctic, Antarctic, and Alpine Research, 2015, 47(4): 611-625.
|
[15] |
Chen X, Liang S, Cao Y et al. Observed contrast changes in snow cover phenology in northern middle and high latitudes from 2001—2014[J]. Scientific reports, 2015, 5(1): 1-9.
|
[16] |
Wang K, Zhang L, Qiu Y et al. Snow effects on alpine vegetation in the Qinghai-Tibetan Plateau[J]. International Journal of Digital Earth, 2015, 8(1): 58-75.
|
[17] |
赵琴, 郝晓华, 和栋材, 等. 1980—2019年北疆积雪时空变化与气候和植被的关系[J]. 遥感技术与应用, 2021, 36(6): 1247-1258.
Zhao Qin, Hao Xiaohua, He Dongcai et al. The relationship between the temporal and spatial changes of snow cover and climate and vegetation in northern Xinjiang from 1980 to 2019. Remote Sensing Technology and Application, 2021, 36(6): 1247-1258.
|
[18] |
肖林, 车涛, 戴礼云. 多源雪深数据在中国的空间特征评估[J]. 遥感技术与应用, 2019, 34(6): 1133-1145.
Xiao Lin, Che Tao, Dai Liyun. Evaluation on the spatial characteristics of multiple snow depth datasets over China. Remote Sensing Technology and Application, 2019, 34(6): 1133-1145.
|
[19] |
肖雄新, 张廷军. 基于被动微波遥感的积雪深度和雪水当量反演研究进展[J]. 地球科学进展, 2018, 33(6): 590-605.
Xiao Xiongxin, Zhang Tingjun. Passive microwave remote sensing of snow depth and snow water equivalent: overview. Advances in Earth Science, 2018, 33(6): 590-605.
|
[20] |
Ji Z, Kang S. Projection of snow cover changes over China under RCP scenarios[J]. Climate Dynamics, 2013, 41(3-4): 589-600.
|
[21] |
Mudryk L, Santolaria-Otín M, Krinner G et al. Historical northern hemisphere snow cover trends and projected changes in the CMIP6 multi-model ensemble[J]. The Cryosphere, 2020, 14(7): 2495-2514.
|
[22] |
Shi Y, Gao X, Wu J et al. Changes in snow cover over China in the 21st century as simulated by a high resolution regional climate model[J]. Environmental Research Letters, 2011, 6(4): 045401
|
[23] |
周晓宇, 赵春雨, 李娜, 等. 东北地区积雪变化及对气候变化的响应[J]. 高原气象, 2021, 40(4): 875-886.
Zhou Xiaoyu, Zhao Chunyu, Li Na et al. Spatiotemporal variation of snow and its response to climate change in Northeast China. Plateau Meteorology, 2021, 40(4): 875-886.
|
[24] |
马丽娟, 秦大河 等. 1957—2009年中国台站观测的关键积雪参数时空变化特征[J]. 冰川冻土, 2012, 34(1): 1-11.
Ma Lijuan, Qin Dahe. Spatial-temporal characteristics of observed key parameters for snow cover in China during 1957—2009. Journal of Glaciology and Geocryology, 2012, 34(1): 1-11.
|
[25] |
邱玉宝, 卢洁羽, 石利娟, 等. 高亚洲地区被动微波遥感雪水当量数据集[J]. 中国科学数据, 2019, 4(1): 106-121.
Qiu Yubao, Lu Jieyu, Shi Lijuan et al. Passive microwave remote sensing data of snow water equivalent in High Asia. China Scientific Data, 2019, 4(1): 106-121.
|
[26] |
张紫豪, 王迪, 吴祥文, 等. 大兴安岭地区多年冻土区不同深度土壤碳分布特征[J]. 地理科学, 2024, 44(3): 534-542.
Zhang Zihao, Wang Di, Wu Xiangwen et al. Distribution characteristics of permafrost soil carbon at different depths in the Da Hinggan Ling Prefecture. Scientia Geographica Sinica, 2024, 44(3): 534-542.
|
[27] |
段明铿, 李欣, 王盘兴. 中国台站冬夏季气温、降水的气候变化特征及其显著性检验[J]. 大气科学学报, 2020, 43(5): 888-896.
Duan Mingkeng, Li Xin, Wang Panxing. Climate change characteristics and significance tests of temperature and precipitation of China weather stations in winter and summer. Transactions of Atmospheric Sciences, 2020, 43(5): 888-896.
|
[28] |
解晗, 同小娟, 李俊, 等. 2000—2018年黄河流域生长季植被指数变化及其对气候因子的响应[J]. 生态学报, 2022, 42(11): 4536-4549.
Xie Han, Tong Xiaojuan, Li Jun et al. Changes of NDVI and EVI and their responses to climatic variables in the Yellow River Basin during the growing season of 2000—2018. Acta Ecologica Sinica, 2022, 42(11): 4536-4549.
|
[29] |
管晓祥, 刘翠善, 鲍振鑫, 等. 黄河源区积雪变化时空特征及其与气候要素的关系[J]. 中国环境科学, 2021, 41(3): 1045-1054.
Guan Xiaoxiang, Liu Cuishan, Bao Zhenxin et al. Spatial-temporal variability of the snow over the Yellow River source region and its influencing climate factors. China Environmental Science, 2021, 41(3): 1045-1054.
|
[30] |
Zhang B, Soden B J. Constraining climate model projections of regional precipitation change[J]. Geophysical Research Letters, 2019, 46: 10522-10531.
|
[31] |
刘一静, 孙燕华, 钟歆玥, 等. 从第三极到北极: 积雪变化研究进展[J]. 冰川冻土, 2020, 42(1): 140-156.
Liu Yijing, Sun Yanhua, Zhong Xinyue et al. Changes of snow cover in the Third Pole and the Arctic. Journal of Glaciology and Geocryology, 2020, 42(1): 140-156.
|
[32] |
杨笑宇, 林朝晖, 王雨曦, 等. CMIP5耦合模式对欧亚大陆冬季雪水当量的模拟及预估[J]. 气候与环境研究, 2017, 22(3): 253-270.
Yang Xiaoyu, Lin Zhaohui, Wang Yuxi et al. Simulation and projection of snow water equivalent over the Eurasian continent by CMIP5 coupled models. Climatic and Environmental Research, 2017, 22(3): 253-270.
|
/
〈 |
|
〉 |