钚同位素示踪技术在树木年轮中的应用研究进展
曹立国(1986—),男,吉林白山人,副教授,博士,主要从事现代地理环境过程的示踪研究。E-mail: lgcao@snnu.edu.cn |
收稿日期: 2023-01-11
修回日期: 2023-08-22
网络出版日期: 2024-05-31
基金资助
国家自然科学基金项目资助(42101100)
版权
Potential application of plutonium isotopes as a tracer in tree ring: A review
Received date: 2023-01-11
Revised date: 2023-08-22
Online published: 2024-05-31
Supported by
National Natural Science Foundation of China(42101100)
Copyright
钚(Pu)核素具有极强的辐射毒性和生物毒性,对动植物和人类健康危害巨大,分析Pu同位素在树轮中的水平、迁移规律及其污染历史对于潜在的生态安全和植物毒性评价至关重要。在中国核电事业快速发展的背景下,建立不同区域树轮的Pu同位素背景数据尤为迫切。为此,本文对目前现存的少量文献资料进行了总结和归纳,首先简要阐述了环境中Pu同位素来源与沉降模式;重点分析了Pu同位素进入树轮的潜在途径,以及Pu同位素在树轮中的径向分布特征及其指示意义;最后,本文强调了建立树轮Pu同位素化学分析测试方法的重要性,及其示踪应用的发展方向,对于促进和拓展树轮Pu同位素示踪研究具有重要现实意义。
曹立国 , 周正朝 , 常晓娇 , 曾小敏 , 王宁 . 钚同位素示踪技术在树木年轮中的应用研究进展[J]. 地理科学, 2024 , 44(5) : 911 -916 . DOI: 10.13249/j.cnki.sgs.20220737
Plutonium (Pu) nuclide has strong radiation toxicity and biological toxicity, which is very harmful to animals, plants and human health. Thus, it is important to analyze the level, migration and pollution history of Pu isotopes in tree rings for ecological security and phytotoxicity evaluation. Under the background of the rapid development of China’s nuclear power industry along coastal areas, it is particularly necessary to establish the background data, including the Pu activity concentration as well as isotopic composition in the tree rings collected from different regions. In the present work, based on collecting and summarizing the limited existing literature and materials, the source and deposition mode of Pu isotope in the environment are briefly described. Then, the spatial pathway of Pu isotopes entering tree rings, the radial distribution characteristics of Pu isotope in tree ring samples as well as its environmental significance are also discussed. Finally, we emphasized the importance of developing chemical analysis method for accurately determining Pu isotopes with mass spectrometry technology and the research direction of its application research of this nuclide in tree rings, which is of great significance to promote the study of Pu isotopes as a tracer in the tree ring.
Key words: 239+240Pu; 137Cs; tree ring; nuclide tracing
表1 主要Pu同位素放射性性质Table 1 Nuclear characteristics of Pu isotopes |
同位素 | 原子质量 | 半衰期/a | 衰变方式 | 衰变能量/MeV※ | 1 Bq 钚同位素对应的质量/pg |
注:※表中括号内百分数表示衰变概率。 | |||||
238Pu | 238.0496 | 87.70 | α | α 5.499(70.9%) 5.456(29.0%) | 1.595 |
239Pu | 239.0522 | 2.40×104 | α | α 5.157(70.77%) 5.144(17.11%) 5.106(11.94%) γ 0.129 | 435.200 |
240Pu | 240.0538 | 6560.00 | α | α 5.168(72.8%) 5.124(27.1%) | 118.510 |
241Pu | 241.0568 | 14.40 | β | α 4.896(83.27%) 4.853(12.2%) β− 0.021 γ 0.149 | 0.262 |
242Pu | 242.0587 | 3.73×105 | α | α 4.902(76.49%) 4.856(23.48%) | 6873.390 |
244Pu | 244.0642 | 8.00×107 | α | α 4.589(81%) 4.546(19%) | 1.511×105 |
[1] |
李玮博, 叶常青, 李钧, 等. 放射性核素的毒性重新分组[J]. 辐射防护, 1999, 19: 114-126.
Li Weibo, Ye Changqing, Li Jun et al. Reclassification of toxicity for radionuclides. Radiation Protection, 1999, 19(2): 114-126.
|
[2] |
曹立国, 潘少明, 刘旭英, 等. 长江口水下三角洲239+240Pu和137Cs的分布特征及环境意义[J]. 地理科学, 2014, 34(1): 97-102.
Cao Liguo, Pan Shaoming, Liu Xuying et al. Distribution characteristics of 239+240Pu and 137Cs in subaqueous delta at the Changjiang River estuary and the environmental significance. Scientia Geographica Sinica, 2014, 34(1): 97-102.
|
[3] |
张克新, 潘少明, 徐仪红. 等. 长江口放射性核素Pu的大气湿沉降初步研究[J]. 地理科学, 2016, 36(1): 157-160.
Zhang Kexin, Pan Shaoming, Xu Yihong et al. Atmospheric wet deposition of radionuclide Pu in the Changjiang River estuary region. Scientia Geographica Sinica, 2016, 36(1): 157-160.
|
[4] |
黄亚楠, 潘少明, 刘志勇. 等. 中国湖泊柱样沉积物中239+240Pu的来源与分布特征[J]. 地理科学, 2018, 38(3): 437-447.
Huang Yanan, Pan Shaoming, Liu Zhiyong et al. The source and distribution characteristic of 239+240Pu in sediment cores of Chinese Lakes. Scientia Geographica Sinica, 2018, 38(3): 437-447.
|
[5] |
黄亚楠, 潘少明, 刘志勇, 等. 中国边缘海沉积物中239+240Pu的来源与存量模型[J]. 地理科学, 2018, 38(11): 1892-1903.
Huang Yanan, Pan Shaoming, Liu Zhiyong et al. The source and inventory model of 239+240Pu in the sediment cores of the marginal sea of China. Scientia Geographica Sinica, 2018, 38(11): 1892-1903.
|
[6] |
Lepp N. The potential of tree-ring analysis for monitoring heavy metal pollution patterns[J]. Environmental Pollution, 1975, 2: 27-32.
|
[7] |
曹立国, 郑建, 潘少明, 等. 环境介质中135Cs的测试分析及其示踪应用研究进展[J]. 中国环境科学, 2017, 37(7): 2731-2739.
Cao Liguo, Zheng Jian, Pan Shaoming et al. 135Cs determination in the environment and its application: A review. China Environmental Science, 2017, 37(7): 2731-2739.
|
[8] |
Xu Y, Qiao J, Hou X et al. Plutonium in soils from northeast China and its potential application for evaluation of soil erosion[J]. Scientific Reports, 2013, 3(12): 3506.
|
[9] |
Liao H, Bu W, Zheng J et al. Vertical distributions of radionuclides (239+240Pu, 240Pu/239Pu, and 137Cs) in sediment cores of Lake Bosten in Northwestern China[J]. Environmental Science and Technology 2014, 48(7): 3840-3866.
|
[10] |
Wang C, Hou S, Pang H et al. 239, 240Pu and 236U records of an ice core from the eastern Tien Shan (Central Asia)[J]. Journal of Glaciology, 2017, 63(241): 929-935.
|
[11] |
Zhang W, Xing S, Hou X. Evaluation of soil erosion and ecological rehabilitation in Loess Plateau region in Northwest China using plutonium isotopes[J]. Soil and Tillage Research, 2019, 191: 162-170.
|
[12] |
Kudo A, Suzuki T, Santry D et al. Effectiveness of tree rings for recording Pu history at Nagasaki, Japan[J]. Journal of Environmental Radioactivity, 1993, 21(1): 55-63.
|
[13] |
Garrec J, Suzuki T, Mahara Y et al. Plutonium in tree rings from France and Japan[J]. Applied Radiation and Isotopes, 1995, 46(11): 1271-1278.
|
[14] |
Mahara Y, Kudo M. Plutonium released by the Nagasaki A-bomb: Mobility in the environment[J]. Applied Radiation and Isotopes, 1995, 46(11): 1191-1201.
|
[15] |
Xu Y, Qiao J, Hou X et al. Determination of plutonium isotopes (238Pu, 239Pu, 240Pu and 241Pu) in environmental samples using radiochemical separation combined with radiometric and mass spectrometric measurements[J]. Talanta, 2014, 119: 590-595.
|
[16] |
Bu W, Zheng J, Guo Q et al. A method of measurement of 239Pu, 240Pu, 241Pu in high U content marine sediments by Sector Field ICP–MS and its application to Fukushima sediment samples[J]. Environmental Science and Technology, 2013, 48(1): 534-541.
|
[17] |
Cao L, Zheng J, Tsukata H et al. Simultaneous determination of radiocesium (135Cs, 137Cs) and plutonium (239Pu, 240Pu) in river suspended particles by ICP-MS/MS and SF-ICP-MS[J]. Talanta, 2016, 159: 55-63.
|
[18] |
Men W, Zheng J, Wang H et al. Pu isotopes in the seawater off Fukushima Daiichi Nuclear Power Plant site within two months after the severe nuclear accident[J]. Environmental Pollution, 2019, 246: 303-310.
|
[19] |
Zhao X, Hou X, Zhou W. Atmospheric iodine (127I and 129I) record in spruce tree rings in the northeast Qinghai-Tibet Plateau[J]. Environmental Science and Technology, 2019, 53: 8706-8714.
|
[20] |
邢闪. 长寿命放射性核素和在环境中的示踪研究[D]. 北京: 中国科学院大学, 2015.
Xing Shan. Trace application of long-lived radionuclides 239, 240Pu and 129I in the environment. Beijing: University of Chinese Academy of Sciences, 2015.
|
[21] |
卜文庭. 痕量放射性核素钚(Pu)的准确测量与环境行为研究[D]. 北京: 北京大学, 2015.
Bu Wenting. Ultra-trace determination of Pu isotopes in environmental samples and the environmental behaviors of Pu. Beijing: Peking University, 2015.
|
[22] |
UNSCEAR. Sources and effects of ionizing radiation[R]. New York: United Nations, 2000.
|
[23] |
Muramatsu Y, W Rühm, Yoshid S et al. Concentrations of 239Pu and 240Pu and their isotopic ratios determined by icp-ms in soils collected from the chernobyl 30 km zone[J]. Environmental Science & Technology, 2000, 34(14), 2913-2917.
|
[24] |
Zheng J, Tagami K, Uchida S et al. Release of plutonium isotopes into the environment from the Fukushima Daiichi Nuclear Power Plant accident: What is known and what needs to be known[J]. Environmental Science and Technology, 2013, 47: 9584-9595.
|
[25] |
Muramatsu Y. Measurement of 240Pu/239Pu isotopic ratios in soils from the Marshall Islands using ICP-MS[J]. Science of the Total Environment, 2001, 278: 151-159.
|
[26] |
Buesseler K. The isotopic signature of fallout plutonium in the North Pacific[J]. Journal of Environmental Radioactivity, 1997, 36: 69-83.
|
[27] |
Krey P, Hardy E, Pachucket C et al. Mass isotopic composition of global fallout plutonium in soil[J]. Proceeding of asymposium of transuranium nuclides in the environment, IAEA-SM-199-39, 1976, 671-678.
|
[28] |
Kelley J, Bond L, Beasley T. Global distribution of Pu isotopes and 237Np[J]. Science of the Total Environment, 1999, 237/238: 483-500.
|
[29] |
Kierepko R, Mietelski J, Ustrnul Z et al. Plutonium isotopes in the atmosphere of Central Europe: Isotopic composition and time evolution vs.circulation factors[J]. Science of the Total Environment, 2016, 569-570: 937-947.
|
[30] |
Cao L, Zhou Z, Wang N et al. Quantitative assessment of the spatial distribution of 239+240Pu inventory derived from global fallout in soils from Asia and Europe[J]. Journal of Geographical Sciences, 2022, 32(4): 605-616.
|
[31] |
Muller R, Sprugel D, Kohn B. Erosional transport and deposition of plutonium and cesium in two small midwestern watersheds[J]. Journal of Environmental Quality, 1978, 7(2): 171-174.
|
[32] |
Barci-Funel G, Dalmasso J, Barci V et al. Study of the transfer of radionuclides in trees at a forest site[J]. Science of the Total Environment, 1995, 173-174: 369-373.
|
[33] |
Holiaka D, Yoschenko V, Levchuk S et al. Distributions of 137Cs and 90Sr activity concentrations in trunk of Scots pine (Pinus sylvestris L.) in the Chernobyl zone[J]. Journal of Environmental Radioactivity, 2020, 222: 106319.
|
[34] |
Yoshihara T, Yoschenko V, Watanabe K et al. A through year behavior of 137Cs in a Japanese flowering cherry tree in relation to that of potassium[J]. Journal of Environmental Radioactivity, 2019, 202: 32-40.
|
[35] |
Watmough S, Hutchinson T, Evans R. The distribution of 67Zn and 207Pb applied to white spruce foliage at ambient concentrations under different pH regimes[J]. Environmental and Experimental Botany, 1999, 41(1): 83-92.
|
[36] |
Brownridge J. The radial distribution of 137Cs and 40K in tree stems[J]. Journal of Plant Nutrition, 1984, 7(6): 887-896.
|
[37] |
Ohashi S, Okada N, Tanaka A et al. Radial and vertical distributions of radiocesium in tree stems of Pinus densiflora and Quercus serrata 1.5 y after the Fukushima nuclear disaster[J]. Journal of Environmental Radioactivity, 2014, 134: 54-60.
|
[38] |
徐海. 年轮化学示踪环境重金属污染研究进展[J]. 地球与环境, 2004, 32(Z1): 1-6.
Xu Hai. Advance in dendrochemistry for monitoring heavy mental pollution in environment. Earth and Environment, 2004, 32(Z1): 1-6.
|
[39] |
Kang H, Liu X, Guo J et al. Characterization of mercury concentration from soils to needle and tree rings of Schrenk spruce (Picea schrenkiana) of the middle Tianshan Mountains, Northwestern China[J]. Ecological Indicators, 2019, 104: 24-31.
|
[40] |
刘禹, 安芷生, 他维媛, 等. 树木年轮中某些化学元素含量与环境变化——以西安市区二个地点为例[J]. 中国科学: 地球科学, 2008, 38(11): 1413-1418.
Liu Yu, An Zhisheng, Ta Weiyuan et al. Level of some chemical elements in tree rings and environmental changes—A case study at two sites in Xi’an City. Science in China Press: Earth Sciences, 2008, 38(11): 1413-1418.
|
/
〈 |
|
〉 |