青藏高原现代冰川冰缘区形变研究综述
贺璐方(1999—),女,河南三门峡人,硕士研究生,主要从事冰冻圈灾害与遥感研究。E-mail: he.lf@mail.hnust.edu.cn |
收稿日期: 2023-05-30
修回日期: 2023-11-20
网络出版日期: 2024-08-12
基金资助
国家自然科学基金项目(42171137)
国家自然科学基金项目(U23A2011)
湖南省自然科学基金项目(2023JJ30237)
版权
Deformation of modern glacier periglacial area on Qinghai-Xizang Plateau
Received date: 2023-05-30
Revised date: 2023-11-20
Online published: 2024-08-12
Supported by
National Natural Science Foundation of China(42171137)
National Natural Science Foundation of China(U23A2011)
Natural Science Foundation of Hunan Province(2023JJ30237)
Copyright
冰缘区系冻融作用强烈的冻土区,易发生地表隆沉、失稳滑移等形变,是冰川灾害的物源区。系统解析冰缘区活动层水−热−力效应引起形变的作用机制,对研究冰缘区地表形变类型和冰川灾害防治具有重要意义。当前青藏高原发育现代冰川冰缘区面积1.05×106 km2,其中在过去几十年由于冰川退缩新增冰缘区面积约 0.15×105 km2。冰缘区在气候、地形和现代冰川作用的综合影响下,产生以冻胀融沉为机理的垂直形变和以重力运移为主导的水平形变。未来研究应利用多源数据,结合冰缘区历史地表形变环境及致灾过程,借助人工智能实现现代冰川冰缘区地质灾害高效识别和预测预报,完善现代冰川冰缘区形变的监测−模拟−预测体系,为区域防灾减灾提供基础数据与理论支撑。
贺璐方 , 王欣 , 王琼 , 张法刚 , 雷东钰 , 尹力辰 , 张勇 , 魏俊锋 . 青藏高原现代冰川冰缘区形变研究综述[J]. 地理科学, 2024 , 44(7) : 1133 -1141 . DOI: 10.13249/j.cnki.sgs.20230493
In this article, the first glacier inventory and the glacier inventory data set of the western China from 2017 to 2018 are used to obtain the retreat of the end of modern glaciers. Combined with the distribution data of frozen soil, the area ratio of modern glacier periglacial area and new periglacial area in each basin of the Qinghai-Xizang Plateau are calculated. By reviewing the development process of deformation monitoring methods, the advantages and disadvantages of monitoring methods in each development stage are summarized, and the future construction of deformation monitoring system in modern glacier periglacial area is prospected. This article starts with the deformation types of the periglacial environment, analyzes and summarizes the deformation mechanisms and influencing factors of each type, and focuses on the mutual transformation of various deformation types under the action of modern glaciers. It provides theoretical support for the construction of high-order deformation models and deformation simulation, and further understanding of the deformation of modern glacier periglacial areas. In the future, the deformation monitoring of modern glacier periglacial area will expand the spatial scale of monitoring, improve the accuracy of monitoring data and train the integrated model by carrying out the layout of measurement control network. Based on the dynamic inversion and analysis of multi-surface deformation models such as ‘glacier-hydrology-geomorphology’, a model library of periglacial deformation types in typical basins is constructed to improve the systematic understanding of the evolution of deformation disasters in periglacial areas. By coupling plate tectonics and other geodynamic processes, the deformation of modern glacier periglacial area is analyzed from multiple angles, and the space-space-ground integrated deformation monitoring system is constructed. The high-order deformation model and prediction scheme are constructed to realize the deformation early warning system of ‘high cognition of deformation mechanism-high-order inversion of process-accurate prediction of type-accurate prediction of results-effective prevention and control of disasters’ in modern glacier periglacial area. It provides a theoretical basis for the early identification and comprehensive prevention of geological disasters in the periglacial area of modern glaciers, and provides scientific data guidance for human and ecological environment protection, engineering construction and maintenance in the downstream of glaciers.
表1 不同下垫面主控因素差异引起冰缘区形变异质性Table 1 Deformation heterogeneity of periglacial area caused by different main controlling factors on different underlying surfaces |
下垫面类型 | 冰缘区形变形式 | 主控因素 |
多年冻土 | 下沉(年际) | 活动层上限含冰量 |
季节冻土 | 冻胀、融沉 | 土壤含水量 |
不连续冻土 | 沉降 | 土壤含水量 |
[1] |
秦大河, 姚檀栋, 丁永建, 等. 冰冻圈科学辞典[M]. 北京: 气象出版社, 2014.
Qin Dahe, Yao Tandong, Ding Yongjian et al. Glossary of cryosphere science. Beijing: China Meteorological Press, 2014.
|
[2] |
季中淳. 中国冰缘区湿地及其环境效应与生态建设[J]. 冰川冻土, 1996, 18, (S1): 274-280.
Ji Zhongchun. The environmental effect and ecological construction of the regional periglacial wetlands in China. Journal of Glaciology and Geocryology, 1996, 18, (S1): 274-280.
|
[3] |
Gido A A N, Bagherbandi M, Sjöberg E L. A gravimetric method to determine horizontal stress field due to flow in the mantle in Fennoscandia[J]. Geosciences Journal, 2019, 23(3): 377-389.
|
[4] |
Jan N, Sebastian W, Moritz L et al. Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate[J]. Nature Communications, 2020, 11(1): 2201.
|
[5] |
Yuan M, Li M, Liu H et al. Subsidence monitoring base on SBAS-InSAR and slope stability analysis method for damage analysis in mountainous mining subsidence regions[J]. Remote Sensing, 2021, 13(16): 3107.
|
[6] |
Zhao R, Li Z, Feng G et al. Monitoring surface deformation over permafrost with an improved SBAS-InSAR algorithm: With emphasis on climatic factors modeling[J]. Remote Sensing of Environment, 2016, 184: 276-287.
|
[7] |
Daout S, Dini B, Haeberli W et al. Ice loss in the Northeastern Tibetan Plateau permafrost as seen by 16 yr of ESA SAR missions [J]. Earth and Planetary Science Letters, 2020, 545(16): 116404.
|
[8] |
邬光剑, 姚檀栋, 王伟财, 等. 青藏高原及周边地区的冰川灾害[J]. 中国科学院院刊, 2019, 34(11): 1285-1292.
Wu Guangjian, Yao Tandong, Wang Weicai et al. Glacial hazards on Tibetan Plateau and surrounding alpines. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1285-1292.
|
[9] |
Murton J B. What and where are periglacial landscapes?[J]. Permafrost and Periglacial Processes, 2021, 32(2): 186-212.
|
[10] |
Rouyet L, Lauknes T, Christiansen Hanne H et al. Seasonal dynamics of a permafrost landscape, Adventdalen, Svalbard, investigated by InSAR[J]. Remote Sensing of Environment, 2019, 231: 0034-4257.
|
[11] |
Zhu J, Li Zhiwei, Hu Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1717.
|
[12] |
Monserrat O, Crosetto M, Luzi G. A review of ground-based SAR interferometry for deformation measurement[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93: 40-48.
|
[13] |
Ge L, Chang H C, Janssen V et al. Integration of GPS, radar interferometry and GIS for ground deformation monitoring[C]//Toyko: Proceedings of 2003 International Symposium on GPS/GNSS, 2003.
|
[14] |
Raucoules D, Colesanti C, Carnec C. Use of SAR interferometry for detecting and assessing ground subsidence[J]. Comptes Rendus Geoscience, 2007, 339(5): 289-302.
|
[15] |
Lanari R, Mora O, Manunta M et al. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7): 1377-1386.
|
[16] |
Berardino P, Fornaro G, Lanari R et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383.
|
[17] |
Perissin D, Wang T. Time-series InSAR applications over urban areas in China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 4(1): 92-100.
|
[18] |
Meisina C, Zucca F, Fossati D et al. Ground deformation monitoring by using the permanent scatterers technique: The example of the Oltrepo Pavese (Lombardia, Italy)[J]. Engineering Geology, 2006, 88(3-4): 240-259.
|
[19] |
Li Shanshan, Li Zhiwei, Hu Jun et al. Investigation of the seasonal oscillation of the permafrost over Qinghai-Tibet Plateau with SBAS-InSAR algorithm[J]. Chinese Journal of Geophysics, 2013, 56(5): 1476-1486.
|
[20] |
Casu F, Manzo M, Lanari R. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from D-InSAR data[J]. Remote Sensing of Environment, 2006, 102(3-4): 195-210.
|
[21] |
Yang H, Peng J, Wang B et al. Ground deformation monitoring of Zhengzhou city from 2012 to 2013 using an improved IPTA[J]. Natural Hazards, 2016, 80: 1-17.
|
[22] |
Baran I, Stewart M P, Kampes B M et al. A modification to the Goldstein radar interferogram filter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(9): 2114-2118.
|
[23] |
Uhlemann S, Smith A, Chambers J et al. Assessment of ground-based monitoring techniques applied to landslide investigations[J]. Geomorphology, 2016, 253: 438-451.
|
[24] |
Chuang J, Lei W, Xuexiang Y et al. Prediction of 3D deformation due to large gradient mining subsidence based on InSAR and constraints of IDPIM model[J]. International Journal of Remote Sensing, 2021, 42(1): 208-239.
|
[25] |
Zefa Y, Zhiwei L, Jianjun Z et al. An InSAR-based temporal probability integral method and its application for predicting mining-induced dynamic deformations and assessing progressive damage to surface buildings[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(2): 472-484.
|
[26] |
Xue F, Lyu X. Applying time series interferometric synthetic aperture radar and the unscented Kalman filter to predict deformations in Maoxian landslide[J]. Journal of Applied Remote Sensing, 2019, 13(1): 014509.
|
[27] |
Gharehdaghi M, Fakher A, Cheshomi A. The combined use of long-term multi-sensor InSAR analysis and finite element simulation to predict land subsidence[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019, XLII-4/W18421-427.
|
[28] |
Yun S, Qianwen L, Xin M et al. On time-series InSAR by SA-SVR algorithm: Prediction and analysis of mining subsidence[J]. Journal of Sensors, 2020(1):8860225.
|
[29] |
李金超, 高飞, 鲁加国, 等. 基于SBAS-InSAR和GM-SVR的居民区形变监测与预测[J]. 大地测量与地球动力学, 2019, 39(8): 837-842.
Li Jinchao, Gao Fei, LuJiaguo et al. Deformation monitoring and prediction of residential areas based on SBAS-InSAR and GM-SVR. Journal of Geodesy and Geodynamics, 2019, 39(8): 837-842.
|
[30] |
Ma P, Zhang F. Prediction of InSAR time-series deformation using deep convolutional neural networks[J]. Remote Sensing Letters, 2020, 11(2): 137-145.
|
[31] |
郭澳庆, 胡俊, 郑万基, 等. 时序InSAR滑坡形变监测与预测的N-BEATS深度学习法——以新铺滑坡为例[J]. 测绘学报, 2022, 51(10): 2171-2182.
Guo Aoqing, Hu Jun, Zheng Wanji et al. N-BEATS deep learning method for landslide deformation monitoring and prediction based on InSAR: A case study of Xinpu landslide. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2171-2182.
|
[32] |
龙飞, 龚诚, 黄海, 等. 藏东南直白沟冰崩型泥石流孕灾条件与动力特征[J]. 水土保持通报, 2022, 42(6): 31-38.
Long Fei, Gong Cheng, Huang Hai et al. Formation conditions and dynamic characteristics of debris flow triggered by an ice avalanche at Zhibai gully in Southeast Tibet. Bulletin of Soil and Water Conservation, 2022, 42(6): 31-38.
|
[33] |
Lin Y T, Chen Y K, Yang K H et al. Integrating InSAR observables and multiple geological factors for landslide susceptibility assessment[J]. Applied Sciences, 2021, 11(16): 7289.
|
[34] |
Lewkowicz A G, Way R G. Extremes of summer climate trigger thousands of thermokarst landslides in a high arctic environment[J]. Nature Communications, 2019, 10(1): 1329.
|
[35] |
Kuradusenge M, Kumaran S, Zennaro M. Rainfall-induced landslide prediction using machine learning models: The case of Ngororero District, Rwanda[J]. International Journal of Environmental Research and Public Health, 2020, 17(11): 4147.
|
[36] |
Cui Y, Jiang Y, Guo C. Investigation of the initiation of shallow failure in widely graded loose soil slopes considering interstitial flow and surface runoff[J]. Landslides, 2019, 16(4): 815-828.
|
[37] |
Dong X, Liu C, Li M et al. Variations in active layer soil hydrothermal dynamics of typical wetlands in permafrost region in the Great Hing'an Mountains, Northeast China[J]. Ecological Indicators, 2021, 129: 107880.
|
[38] |
Yang X, Jiang A, Zheng S. Analysis of the effect of freeze-thaw cycles and creep characteristics on slope stability[J]. Arabian Journal of Geosciences, 2021, 14(11): 1033.
|
[39] |
Carlà T, Intrieri E, Raspini F et al. Perspectives on the prediction of catastrophic slope failures from satellite InSAR[J]. Scientific Reports, 2019, 9(1): 14137.
|
[40] |
周保, 魏刚, 张永艳, 等. 不同地表条件下青藏公路对多年冻土的热影响差异研究[J]. 冰川冻土, 2022, 44(2): 470-484.
Zhou Bao, Wei Gang, Zhang Yongyan et al. Study on the difference of heat effect of Qinghai-Tibet highway on permafrost under different surface conditions. Journal of Glaciology and Geocryology, 2022, 44(2): 470-484.
|
[41] |
Turetsky M R, Abbott B W, Jones M C et al. Carbon release through abrupt permafrost thaw[J]. Nature Geoscience, 2020, 13(2): 138-143.
|
[42] |
莫宣学. 从岩浆岩看青藏高原地壳的生长演化[J]. 地球科学, 2020, 45(7): 2245-2257.
Mo Xuanxue. Growth and evolution of crust of Tibetan Plateau from perspective of magmatic rocks. Earth Science, 2020, 45(7): 2245-2257.
|
[43] |
易立. 青藏高原隆升对柴达木盆地新生界油气成藏的控制作用[D]. 北京: 中国石油大学, 2022.
Yi Li. Effect of the Tibetan Plateau uplift on the hydrocarbon accumulation of Cenozoic Qaidam Basin. Beijing: China University of Petroleum, 2020.
|
[44] |
母梅, 牟翠翠, 刘和斌, 等. 北半球热融湖塘分布及其甲烷排放潜力[J]. 冰川冻土, 2023, 45(2): 535-547.
Mu Mei, Mu Cuicui, Liu Hebin et al. Distribution and methane emission potential of thermal melt lakes in the Northern Hemisphere. Journal of Glaciology and Geocryology, 2023, 45(2): 535-547.
|
[45] |
McColl S T. Paraglacial rock-slope stability[J]. Geomorphology, 2012, 153: 1-16.
|
[46] |
Patton A I, Rathburn S L, Capps D M. Landslide response to climate change in permafrost regions[J]. Geomorphology, 2019, 340: 116-128.
|
[47] |
Farbrot H, Isaksen K, Etzelmüller B et al. Ground thermal regime and permafrost distribution under a changing climate in northern Norway[J]. Permafrost and Periglacial Processes, 2013, 24(1): 20-38.
|
[48] |
López-Martínez J, Serrano E, Schmid T et al. Periglacial processes and landforms in the South Shetland Islands (northern Antarctic Peninsula region)[J]. Geomorphology, 2012, 155: 62-79.
|
[49] |
程国栋, 赵林, 李韧, 等. 青藏高原多年冻土特征、变化及影响[J]. 科学通报, 2019, 64(27): 2783-2795.
Cheng Guodong, Zhao Lin, Li Ren et al. Characteristics, changes and impacts of permafrost on Qinghai-Tibet Plateau. Chinese Science Bulletin, 2019, 64(27): 2783-2795.
|
[50] |
赵丹丹, 刘家福, 刘吉平, 等. 东北寒区多年冻土退化的主要研究综述[J]. 科学技术与工程, 2022, 22(30): 13151-13161.
Zhao Dandan, Liu Jiafu, Liu Jiping et al. A review of main studies on permafrost degradation in Northeast China. Science Technology and Engineering, 2022, 22(30): 13151-13161.
|
[51] |
Chen Jie, Wu Tonghua, Zou Defu et al. Magnitudes and patterns of large-scale permafrost ground deformation revealed by Sentinel-1 InSAR on the central Qinghai-Tibet Plateau[J] . Remote Sensing of Environment, 2022, 268: 112778.
|
[52] |
金会军, 赵林, 王绍令, 等. 青藏公路沿线冻土的地温特征及退化方式[J]. 中国科学D辑: 地球科学, 2006, 36(11): 1009-1019.
Jin Huijun, Zhao Lin, Wang Shaoling et al. Ground temperature characteristics and degradation mode of frozen soil along Qinghai-Tibet Highway. Chinese Science D: Earth Science,2006, 36(11): 1009-1019.
|
[53] |
Singh H, Pandey C A . Land deformation monitoring using optical remote sensing and PS-InSAR technique nearby Gangotri glacier in higher Himalayas[J]. Modeling Earth Systems and Environment, 2020, 7(1): 1-13.
|
[54] |
Zhang Z, Wang M, Wu Z et al. Permafrost deformation monitoring along the Qinghai-Tibet Plateau engineering corridor using InSAR observations with multi-sensor SAR datasets from 1997—2018[J]. Sensors, 2019, 19(23): 5306.
|
[55] |
Bhasin R, Grimstad E, Larsen J O et al. Landslide hazards and mitigation measures at Gangtok, Sikkim Himalaya[J]. Engineering Geology, 2002, 64(4): 351-368.
|
[56] |
Petrakov D A, Chernomorets S, Evans S G et al. Catastrophic glacial multi-phase mass movements: A special type of glacial hazard[J]. Advances in Geosciences, 2008, 14: 211-218.
|
[57] |
刘世博, 赵林, 汪凌霄, 等. InSAR技术在多年冻土区形变监测的应用[J]. 冰川冻土, 2021, 43(4): 964-975.
Liu Shibo, Zhao Lin, Wang Lingxiao et al. Application of InSAR technology in deformation monitoring of permafrost regions. Journal of Glaciology and Geocryology, 2021, 43(4): 964-975.
|
[58] |
张明礼, 周志雄, 周凤玺, 等. 夏季降雨增加对多年冻土活动层水热状态的影响研究[J]. 岩土力学, 2022, 43(12): 3335-3346.
Zhang Mingli, Zhou Zhixiong, Zhou Fengxi et al. Effects of increased summer rainfall on the thermal-moisture dynamics of permafrost active layer. Rock and Soil Mechanics, 2022, 43(12): 3335-3346.
|
[59] |
刘传正, 吕杰堂, 童立强, 等. 雅鲁藏布江色东普沟崩滑−碎屑流堵江灾害初步研究[J].中国地质, 2019, 46(2):219-234.
Liu Chuanzheng, Lyu Jietang, Tong Liqiang et al. Research on glacial/rock fall-landslide-debris flows in Sedongpu basin along Yarlung Zangbo River in Tibet. Geology in China, 2019, 46(2): 219-234.
|
[60] |
孙美平, 刘时银, 姚晓军, 等. 2013年西藏嘉黎县“7.5”冰湖溃决洪水成因及潜在危害[J].冰川冻土, 2014, 36(1): 158-165.
Sun Meiping, Liu Shiyin, Yao Xiaojun et al. The cause and potential hazard of glacial lake outburst flood occurred on July 5, 2013 in Jiali County, Tibet. Journal of Glaciology and Geocryology, 2014, 36(1): 158-165.
|
/
〈 |
|
〉 |