高原生存环境与人地关系演化

青藏高原现代冰川冰缘区形变研究综述

  • 贺璐方 , 1 ,
  • 王欣 , 1, * ,
  • 王琼 1 ,
  • 张法刚 1 ,
  • 雷东钰 1 ,
  • 尹力辰 1 ,
  • 张勇 2 ,
  • 魏俊锋 1
展开
  • 1.湖南科技大学地球科学与空间信息工程学院,湖南 湘潭 411201
  • 2.湖南科技大学 资源环境与安全工程学院,湖南 湘潭 411201
王欣。E-mail:

贺璐方(1999—),女,河南三门峡人,硕士研究生,主要从事冰冻圈灾害与遥感研究。E-mail:

收稿日期: 2023-05-30

  修回日期: 2023-11-20

  网络出版日期: 2024-08-12

基金资助

国家自然科学基金项目(42171137)

国家自然科学基金项目(U23A2011)

湖南省自然科学基金项目(2023JJ30237)

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

Deformation of modern glacier periglacial area on Qinghai-Xizang Plateau

  • He Lufang , 1 ,
  • Wang Xin , 1, * ,
  • Wang Qiong 1 ,
  • Zhang Fagang 1 ,
  • Lei Dongyu 1 ,
  • Yin Lichen 1 ,
  • Zhang Yong 2 ,
  • Wei Junfeng 1
Expand
  • 1. School of Earth Sciences and Spatial Information Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
  • 2. School of Resource & Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China

Received date: 2023-05-30

  Revised date: 2023-11-20

  Online published: 2024-08-12

Supported by

National Natural Science Foundation of China(42171137)

National Natural Science Foundation of China(U23A2011)

Natural Science Foundation of Hunan Province(2023JJ30237)

Copyright

Copyright reserved © 2024.

摘要

冰缘区系冻融作用强烈的冻土区,易发生地表隆沉、失稳滑移等形变,是冰川灾害的物源区。系统解析冰缘区活动层水−热−力效应引起形变的作用机制,对研究冰缘区地表形变类型和冰川灾害防治具有重要意义。当前青藏高原发育现代冰川冰缘区面积1.05×106 km2,其中在过去几十年由于冰川退缩新增冰缘区面积约 0.15×105 km2。冰缘区在气候、地形和现代冰川作用的综合影响下,产生以冻胀融沉为机理的垂直形变和以重力运移为主导的水平形变。未来研究应利用多源数据,结合冰缘区历史地表形变环境及致灾过程,借助人工智能实现现代冰川冰缘区地质灾害高效识别和预测预报,完善现代冰川冰缘区形变的监测−模拟−预测体系,为区域防灾减灾提供基础数据与理论支撑。

本文引用格式

贺璐方 , 王欣 , 王琼 , 张法刚 , 雷东钰 , 尹力辰 , 张勇 , 魏俊锋 . 青藏高原现代冰川冰缘区形变研究综述[J]. 地理科学, 2024 , 44(7) : 1133 -1141 . DOI: 10.13249/j.cnki.sgs.20230493

Abstract

In this article, the first glacier inventory and the glacier inventory data set of the western China from 2017 to 2018 are used to obtain the retreat of the end of modern glaciers. Combined with the distribution data of frozen soil, the area ratio of modern glacier periglacial area and new periglacial area in each basin of the Qinghai-Xizang Plateau are calculated. By reviewing the development process of deformation monitoring methods, the advantages and disadvantages of monitoring methods in each development stage are summarized, and the future construction of deformation monitoring system in modern glacier periglacial area is prospected. This article starts with the deformation types of the periglacial environment, analyzes and summarizes the deformation mechanisms and influencing factors of each type, and focuses on the mutual transformation of various deformation types under the action of modern glaciers. It provides theoretical support for the construction of high-order deformation models and deformation simulation, and further understanding of the deformation of modern glacier periglacial areas. In the future, the deformation monitoring of modern glacier periglacial area will expand the spatial scale of monitoring, improve the accuracy of monitoring data and train the integrated model by carrying out the layout of measurement control network. Based on the dynamic inversion and analysis of multi-surface deformation models such as ‘glacier-hydrology-geomorphology’, a model library of periglacial deformation types in typical basins is constructed to improve the systematic understanding of the evolution of deformation disasters in periglacial areas. By coupling plate tectonics and other geodynamic processes, the deformation of modern glacier periglacial area is analyzed from multiple angles, and the space-space-ground integrated deformation monitoring system is constructed. The high-order deformation model and prediction scheme are constructed to realize the deformation early warning system of ‘high cognition of deformation mechanism-high-order inversion of process-accurate prediction of type-accurate prediction of results-effective prevention and control of disasters’ in modern glacier periglacial area. It provides a theoretical basis for the early identification and comprehensive prevention of geological disasters in the periglacial area of modern glaciers, and provides scientific data guidance for human and ecological environment protection, engineering construction and maintenance in the downstream of glaciers.

冰缘区原指冰川边缘,现指以强烈冻融作用为特征,气候严寒且冻融侵蚀在地貌形态塑造中起决定性作用的区域[1-2]。现代冰川冰缘区指受现代冰川作用影响的冻土区,基岩岩性、水文条件、冰川侵蚀等因素的时空分布与转换会引起地表失稳和物质输送。冰川退缩后裸露地表即新增冰缘区。青藏高原现代冰川末端周边广富冻土,地表冻融强烈,冰缘地貌普遍发育。
冰缘区形变始于地表物质积累,现代冰川作用、气候、地形、地壳活动等因素[3]的耦合影响造成了冻土区的隆沉、滑塌,冰雪消融侵蚀、表碛岩屑搬运堆积、冰川运动失稳等过程,塑造了现代冰川冰缘区特征迥异的形变模式。冰缘环境下活动层岩性和节理分布是失稳的先决条件,冰缘地貌、土地覆盖和水文条件等作为动态驱动因素影响活动层稳定性。靠近地表的活动层在气温的日、季节性循环交替中经历冻融循环,可容纳物质体积和土壤孔隙压力改变引起地表形变,活动层厚度表现出较强的垂直分异[4-6],引起冰缘区形变时空序列的异质性。由水热状态改变及应力重分布为主导的活动层稳态转变常引起以重力为主营力的年际持续下沉[7-9],冰雪融水下渗冻结,地表隆起形成冻胀丘,触发边坡冰岩崩−冰岩碎屑流−泥石流−冰湖溃决等冰川灾害链[8]。对冰缘区开展形变监测工作,建立边坡失稳模式,完善现代冰川冰缘区边坡破坏自动识别机制,对高寒区冰岩崩、融滑坡等冰川灾害预警具有重要意义[9]
本文聚焦青藏高原受现代冰川影响的冰缘区,分别从形变类型、空间分布特征出发,总结形变机理和影响因子,分析冰缘区形变研究体系存在的不足与挑战,对未来冰缘区形变监测与灾害预警提出展望。

1 现代冰川冰缘区分布、形变监测与模拟

对比第一次冰川编目(① http://www.dx.doi.org/10.12072/ncdc.Westdc.db0014.2020 [2022-10-11])与2017—2018年中国西部冰川编目数据集(① http://www.dx.doi.org/10.11922/sciencedb.j00001.00227 [2022-10-11]),结合青藏高原冻土分布情况,青藏高原地区冻土覆盖面积约2.51×106 km2,现代冰川冰缘区面积约占冻土区面积的42%,为1.05×106 km2图1a),其中,青藏高原内流区分布最为广泛,为4.09×105 km2图1b),约占现代冰川冰缘区总面积的38.8%(图1c)。对比两次冰川编目边界范围发现,自20世纪60年代以来,由于冰川退缩新裸露冰缘区面积约0.15×105 km2,约占现代冰川冰缘区面积的1.4%,雅鲁藏布江流域和塔里木内流区新增冰缘区面积最多(图1a),分别新增约7.9×103 km2、3.3×103 km2图1b),占新增冰缘区总面积的51.8%、21.4%(图1c)。
图1 青藏高原冰缘区分布

a.青藏高原各流域现代冰川冰缘区与新增冰缘区分布(b、c图注与括号内简称一致); b.各流域现代冰川冰缘区、

新增冰缘区面积统计;c.流域现代冰川冰缘区、新增冰缘区面积占比示意

Fig. 1 Distribution of the periglacial area of the Qinghai-Xizang Plateau

研究冰缘区形变,对地监测系统是关键。形变监测手段经历了实地勘测、光学遥感和控制点测量数据联合分析、雷达影像实现时序监测的发展过程[10-13]图2)。传统大地测量通过实地勘测获取高精度即时监测数据,受限于观测条件及人力资源分配,目前冰缘区尚未形成完整的水准测量数据库。卫星导航系统以牺牲大范围形变场高空间分辨率监测为代价,实现了简便高效等优势。传统光学遥感基于影像匹配技术,借助影像幅度寻找同名点,获取两幅影像在同名点处对应像素的偏移量,与控制点联合解算获取高程信息,实现大范围、高量级地表形变监测,哨兵二号光学影像通过频率域高精度匹配实现对地形变监测。合成孔径雷达(Synthetic Aperture Radar,SAR)技术的发展填补了数据获取的空缺,可满足长时间序列毫米级监测,在特殊地区补充甚至取代地面技术。InSAR(Interferometric Synthetic Aperture Radar)测量石冰川表面运动证明了该技术在监测岩石滑坡等表面快速运移方面的优势和可靠性[14];利用散射体稳定的后向散射特性获取波段信息,可显著提高监测精度,研究者们采用永久散射体合成孔径雷达干涉测量(Persistent Scatterer Interferometric Synthetic Aperture Radar,PS-InSAR)技术监测滑坡易发区的稳定性,基于持续散射器(StaMPS)方法获得表面位移的时间序列一维视线图。基于PALSAR数据的青藏高原冻土形变监测表明,高相干性的L波段PALSAR数据[14],适用于地形复杂和冰缘环境形变监测。Berardino、Fornaro等提出的差分干涉测量短基线集时序分析技术(Small Base line Subset InSAR,SBAS-InSAR)利用小基线抑制时空失相干,提高监测精度的同时弥补了PS-InSAR算法在超过基线阈值空间失相干的不足[15-16]。目前多利用哨兵系列卫星数据通过时序InSAR算法进行相干点的选取与干涉像对配准[17],高海拔山区多采用PS-InSAR方法进行时序监测[18],基于StaMPS的小基线子集(SBAS)也被证实可用于冰缘区形变监测研究[19-20]。有学者提出干涉点细化方案,如改进IPTA算法,通过融合多视影像、空间滤波和空间插值方法进行大气相位延迟滤波[21],实现SAR数据处理方面的效率革新。算法优化剔除低相干冗余特征点,极大提高了多参考堆栈干涉对去相干解缠的效率[22-23]
图2 冰缘区形变监测方法发展过程

Fig. 2 Development process of deformation monitoring methods in periglacial area

对现代冰川冰缘区开展形变监测与灾害预警工作,将GIS系统与数据统计模型结合进行区域边坡失稳易发性评价,对区域景观和冰川下游人文资源保护具有现实意义。基于物理机制、数理统计和机器学习,以概率积分法[24-25]、卡尔曼滤波[26]和有限元[27]等模拟方法为代表的模型驱动型预测方法,对研究区地质条件获取、历史数据量和计算工作量等方面要求较高。以支持向量机[28-29]和长短期记忆神经网络[30]等为代表的数据驱动预测在模型训练和迁移性等方面各具特色[31]。随着对多因素耦合触发冰缘区边坡失稳机理认识的加深,大量学者通过建立经验模型和冰缘区边坡失稳模拟进行斜坡演化的统计建模和应力释放数值模拟,对模型中采用的各种参数进行敏感性分析以获取各要素的权重比[31-38]。利用循环神经网络作为网络框架,用长短记忆模型(LSTM)进行地表沉降特征学习表明,该模型对大区域时序形变的短期预测具有有效性[31],应用N-BEATS网络模型和SAR数据结合可有效进行监测区中短期滑坡预测[31]。基于自筛选的双向长短时记忆网络与条件随机场(SBiLSTM-CRF)滑坡易发性模型,与传统的机器学习模型相比,其算法通过准确分析各滑坡点之间的相关性,提取各环境因子之间更深层的特征信息[38],改善“学习”准确度。

2 青藏高原现代冰川冰缘区形变类型与成因

青藏高原现代冰川冰缘区,多属气候严寒的高海拔地带,冰的存在使冻土力学、理化性质随外界温压条件变化而产生改变[39]。冰川融水侵蚀、埋藏冰消融导致岩石节理中水压过高,冻土活动层加厚,冰缘区形变类型发生多相转变(图3)。青藏高原现代冰川冰缘区不同地貌单元、气候条件和扰动因素共同造成了形变的区域异质性,水热状态扰动是引起岩土力学和土壤应力重分配的根本因素。历史事件形变特征表现为:年均垂向形变极值随坡度增加逐渐减小[40-41],在坡度>3°的地表,以水平向形变为主。由冻土退化引起冰缘区一系列独特的地貌景观与形变演化,将冰冻圈、大气圈、岩石圈和生物圈连接起来,产生循环效应(图3)。
图3 现代冰川冰缘区形变过程

Fig. 3 Schematic diagram of deformation process in modern glacier periglacial area

2.1 地表隆升

地表积雪频繁消融和冻胀对冰缘区造成雪蚀侵蚀,地层在水分聚集过程中发生冻结,体积膨胀导致地表鼓起形成冻胀丘,高海拔冰川融水裹挟地表松散物质向下游移动侵蚀坡面,动力势能削弱,岩屑堆积,地表抬升(图3)。高温使冰缘区多年冻土层向季节冻土和不连续冻土转化,现代冰川冰缘区形变模式受活动层下垫面类型影响,产生异质性(表1)。青藏高原黄河源地区多格茸盆地内分布着密集的独立丘状地形[42],对唐古拉冰缘区进行地表监测表明,2015年5—7月中旬和2016年6—10月该地区出现了轻微的地表抬升。格兰丹东冰川后退区地表总体上呈轻微抬升,东北部和南部沉降趋势显著[17]。大量研究表明,年际形变量高值主要集中在青藏高原北麓河、五道梁地区,青藏高原西北部、西藏当雄县附近形变量较小[17]
表1 不同下垫面主控因素差异引起冰缘区形变异质性

Table 1 Deformation heterogeneity of periglacial area caused by different main controlling factors on different underlying surfaces

下垫面类型冰缘区形变形式主控因素
多年冻土下沉(年际)活动层上限含冰量
季节冻土冻胀、融沉土壤含水量
不连续冻土沉降土壤含水量
发生高位冰、雪、岩崩,块体碰撞溃散,随冰川融水流动堆积,融水冻结地表抬升(图3)。青藏高原现代冰川整体处于消退阶段,地壳因重力卸载产生回弹,板块构造增厚和地幔物质通过岩浆作用注入增厚[43]这两种机制引起青藏高原现代冰川末端地表隆升的空间差异性,地幔烘烤减弱,地温梯度降低[44],使活动层出现消融滞后性。

2.2 地表沉降

活动层冰楔融化,以融区为中心受岩性影响并伴随局地扰动,或冰缘区流体侵蚀,造成地表土壤失去支撑下沉、塌陷,造成毫米至厘米级沉降[41]。水−热−力耦合易诱发热融塌陷和热融湖塘[14],青藏高原中西部地区广布富冰多年冻土,冻土层冰楔消融扩散,土层间隙缩小,冰缘区塌陷,融水汇聚形成热融湖塘(图3)。湖水吸收长波辐射增加蓄热,促使湖岸与湖底发生水平和垂直演化,加剧湖底冻土层的融化下沉,对湖岸边冻土层产生热侵蚀和机械侵蚀扩张[45]
热融湖塘作为一种典型的热喀斯特过程,冻土层下发生热融贯通改变下覆层土体结构,湖面扩张对地表景观造成瞬时破坏,改变水体有机质含量,融冰期和结冰期释放大量甲烷,影响水体中有机质的分解速率和冻土层土壤结构、温度、有机碳释放过程等。活动层间土壤水分空间格局变化,改变地下水文过程和地表水的产汇流,对冰川下游居民点和工程建设造成危险隐患。地表凹陷造成活动层深层土壤暴露,释放出长期保存于冻土层中的化学溶质[14,31],近地表冻土层的碳被释放到大气中,影响局地水汽循环和气候变化,增加温室气体含量,产生正反馈效应[40-42,46]图3),加剧冰缘区冰层融化和冻土消融。

2.3 失稳运移

冰缘区斜坡失稳包括以热融滑塌和活动层滑脱为主的冻融泥流、崩塌和蠕变滑坡等。坡体内部剪应力引起地表长期缓慢而持续的变形,易产生局部破裂面,坡体随蠕变的发展而不断松弛,季节性融雪引起活动层孔隙水压力升高,地下冰水热状态改变,冰层暴露融化,上层土体连续滑塌[45]。土体结构和物理力学性质发生改变,黏聚力和抗剪强度降低[46],静时效力和瞬时重力共同作用,在水−热−力耦合作用下发生滑坡、崩塌、泥流等灾害。上覆饱和土层在冻融循环和降水或冰雪融水作用下,沿冻融界面向下游发生缓慢蠕滑,形成冻融泥流(图3)。高陡斜坡段岩石在反复冻融影响下裂隙节理发育,冰川融水入渗岩土根部,向岩石侧面释放压力,发生崩塌(图3)。由冻融蠕流和雪蚀−重力作用引起的斜坡失稳,多发生于阴坡高含冰量坡段[44,47]
热融滑塌是青藏高原冰缘区滑坡形变最常见的一种表现形式,多分布于3°~8°的平缓阴坡一侧[47],如北麓河2017年热融滑坡事件优先发生于4°~9°的东北面斜坡上[47]。富冰多年冻土区的高温多年冻土斜坡处,地表升温使得地下冰暴露融化,形成初次坍塌滑动[48],上游冰川融水对滑带造成冲刷侵蚀,滑带壁处地下冰持续融化,发生缓慢持续性蠕滑[49],斜坡上方持续发生溯源侵蚀,泥流在重力作用下携带岩屑和泥砂混合物向下游移动造成滑道侧蚀。在易于亲水软化和软质岩中多发生滑坡和崩塌,如色东普沟冰崩[50],冰雪融水伴随大量泥沙形成泥石流滑塌。活动层滑脱由冰快速融化造成超孔隙水压力,地下饱和度增加[51],冻融界面抗剪强度骤减,从而活动层发生整体性快速滑脱,通常,坡面会受到冰雪融水和降水冲刷造成二次侵蚀,形成坡面物质运移形变。

3 青藏高原现代冰川冰缘区形变影响因素

冰缘区表面广布多年冻土,冻土层承载着特殊环境下发生形变的可能性,综合考虑气候、地形、冰川多因素作用下的形变过程[33,52-53],是理解并构建形变模型的关键。通过剖析不同形变类型模式、演化过程及机理,刻画冰缘区形变结构(图4),为深入分析现代冰川冰缘区形变影响因素奠定基础。
图4 冰缘区形变结构

Fig. 4 Structure of periglacial area deformation

3.1 气候因子

气温和地温通过参与冰水物质相变过程,影响地表景观形态,地表温度被认为是评价冰缘区地表形变发生与否的关键因素[34-35]。常用年平均地温与活动层厚度定量描述冻土动态特征,利用钻孔地温曲线反映该处冻土形变史和演化趋势。当地温梯度小于下层或周边融土层时,发生上引式或侧引式退化,当活动层最大季节融化深度大于最大冻融深度时发生下引式退化,当冻土层地温近似于零梯度,表明冻土层受到水平和垂直热流作用的影响效应几近相等[29]。利用青藏高原气象站点的观测数据,可通过回归模型实现现代冰川冰缘区局部气候−地形−景观演化分析,如印度洋季风为喜马拉雅山南坡带来高降水量,促使该地现代冰川冰缘区广泛发育。北麓河研究区2016年解冻季节气温和降水量激增,水−热耦合影响使该年内融化坍塌事件频发。2010—2016年由于解冻季节气温异常高,伴随高降水量影响,地表沉降事件数量和表面积显著增加[54]。高温和强降水将热量传递给冻土,加速冻土消融,增加岩体裂隙和孔隙中的含水量并对边坡岩体机械结构造成影响,引发浅层滑坡破坏[36,55-56]。喀喇昆仑地区洪扎河谷滑坡事件在观测期间普遍出现了短时间内异常滑动,与2008年的强降雨事件有关。高强度降水量加剧冰川表面侵蚀和地表岩石风化速度,地下水位缓慢提高,地表做出滑坡等不稳定响应[55]
藏东南地区暖湿气候使这一带成为冰川泥石流频发区。“变暖”引起冰川侧面岩石压力环境改变,冰川热力性质转变使冰床与下伏基岩摩擦力减小,冰体剪切强度降低,加剧冰崩−泥石流−冰湖溃决灾害链启动和演化的可能性,固态降水增多“变湿”、冰川物质积累增大,二者共同促进了冰川表面流体流速[8]。冰缘区表面常年存在冰雪积累,较高的地表反照率使地表升温。富冰地区的冰雪反照率正反馈机制引起冰层融化、活动层厚度加深,引发更严重的地表形变[48];在海拔较高的山区,土壤水分储量较小,温度较低,基岩相对稳定,不易发生形变;相对平坦的地区,土壤含水量较高,多表现为季节性垂向形变[56]。二道河地区在4月和7月土壤含水量较高,冰缘区表现出较强的季节形变特性,但整体上表现出缓慢的长期沉降[18]。总体而言,青藏高原气候整体上呈现出“变暖”“变湿”特征,加剧冰缘区地表形变地质灾害风险[8,51]

3.2 地形因子

地表作为形变发生的承载体,地形因子在形变过程中起到加速或减缓的作用。坡度对地表东西向形变影响显著,冰川融水对高坡度角斜坡表面侵蚀加剧,碎屑和松散固态物质在坡底堆积增多[57]且大量的热融滑塌现象分布在山体坡向北面[25],山前3°~8°的缓坡区域。可可西里地区热融滑塌多发生在2°~10°的山地丘陵坡面[37]。坡向通过接受太阳辐射改变岩体表层温度,岩体温度急剧改变使岩体内部产生大温差,热应力增大,岩体结构改变,稳定性降低[37]。可可西里地区北向和东北向的山地丘陵可接收到更多的太阳辐射总量,地下冰快速升温引起活动层重力迁移和热应力变化,发生热融滑塌。总体而言,青藏高原北坡角受到的太阳辐射较少,蒸散量较弱,土壤含水量较高,朝北坡的季节变形略大于东西向,略大于南向[53]。高海拔冰川以固态降水为补给源,大量热融滑塌事件发生在海拔介于高山山麓和丘陵山地之间的中部区域。在对二道河地区进行观测时,发现在观测期间部分地势较低且平缓的观测点形变量远高于其他,北麓河盆地野外调查和统计结果显示[38],热融滑塌集中分布于海拔4700~4850 m。地形起伏通过改变土壤含水量对地表季节形变造成影响,未来可利用地形起伏度对区域地形特征进行宏观描述[50]。曲率定量评价坡形,平面曲率不利于地下水汇集,不易滑坡,向两侧偏移程度越大发生滑坡的可能性越大,如藏东南地区滑坡事件的集群性分布。

3.3 现代冰川

现代冰川对地表形变影响主要包括:①冰川进退对地表的承压和释压[58]导致地表重力沉降和抬升;②冰雪崩/融水侵蚀、运移冰碛物导致地表形变;③融水改变径流区的水热状态,促进地表冻胀、形变运移;高寒山区强烈的冻融作用驱使高位岩体失稳形成泥石流,由冰川、积雪强烈消融洪水共同作用诱发冰川融水型泥石流。现代冰川冰缘区多受冰川退缩、融水侵蚀等共同作用产生形变,表现出链式反应。如新增冰缘区因地表承压减少产生抬升,冻融过程、侵蚀强烈和消融洪水共同诱发泥石流(图3),冰川快速变化降低自身稳定性的同时,增加了冰川灾害发生的风险。
冰川的侵蚀作用使现代冰川冰缘区表面基岩在冰川运动过后出现消磨刻蚀,引起轻微沉降。海洋型冰川广泛发育的藏东南地区,历史记载,地势陡峻的色东普沟连续发生冰崩,冰崩体刮铲沟谷表层松散冰碛物并形成碎屑流向下运动,动力消失便堆积并堵塞河道,形成堰塞湖,系以冰崩为初次灾害诱发的冰崩堵江事件[59]。冰川侵蚀产生的大量松散岩屑伴随降雨和融水径流,随冰川运动向下游输送,对坡体造成磨蚀,在坡脚形成表碛堆积(图3)。阿汝错流域53号冰川和其临近的50号冰川在同年内,发生大规模冰崩事件形成大面积冰崩堆积体,使地表抬升。冰川后退为泥石流孕灾提供了丰富的冰碛物物源,增加了冰川末端堆积抬升的可能性和冰湖溃决风险。大量历史事件表明冰川灾害的发生通常呈连锁反应而非单一的表现形式,据此推测,2013年西藏嘉黎县“7·5”冰湖溃决洪水,系冰、雪崩共同作用诱发[60]。未来情景下,现代冰川作用对冰缘区的影响及引发的形变灾害链响应,应当成为现代冰川冰缘区形变监测研究的关键要素。

4 总结与展望

冰缘区形变监测能有效反映冰冻圈的动态演化,本文基于青藏高原现代冰川冰缘区现状,剖析历史形变过程,对各类型形变机理及影响因子展开讨论。当前对冰缘区形变实现了多时相、大范围的有效监测,观测手段呈现便捷化和精准化的发展趋势,但尚未建立冰缘区完整的水准测量数据库且形变监测数据时空分辨率有待提高;冰缘形变数值模拟多针对局部单一形变过程进行,分布式形变过程预测耗时且存在单变量预测时间滞后性;冰缘地表监测尚未实现形变致灾因子临界条件的判定,灾前预报精度有待提高。
未来,现代冰川冰缘区形变监测可进行空间尺度的扩展,开展测量控制网的布设,提高监测数据精度,实现多源数据联合立体化观测地表形变。基于“冰川−水文−地貌”等多地表形变模式开展动态反演与分析,构建典型流域冰缘形变类型模型库,训练集成模型,实现形变过程的高阶反演。耦合板块构造学等地球动力学过程多角度解析现代冰川冰缘区形变,完善空−天−地一体化形变监测体系,构建高阶形变模型与预测方案,实现现代冰川冰缘区“形变机理高度认知−过程高阶反演−类型精准预测−结果精确预报−灾害有效防控”形变预警系统,为现代冰川冰缘区地质灾害早期识别和综合防范提供理论依据,为冰川下游人文、生态环境保护和工程建设维护提供科学数据指导。
[1]
秦大河, 姚檀栋, 丁永建, 等. 冰冻圈科学辞典[M]. 北京: 气象出版社, 2014.

Qin Dahe, Yao Tandong, Ding Yongjian et al. Glossary of cryosphere science. Beijing: China Meteorological Press, 2014.

[2]
季中淳. 中国冰缘区湿地及其环境效应与生态建设[J]. 冰川冻土, 1996, 18, (S1): 274-280.

Ji Zhongchun. The environmental effect and ecological construction of the regional periglacial wetlands in China. Journal of Glaciology and Geocryology, 1996, 18, (S1): 274-280.

[3]
Gido A A N, Bagherbandi M, Sjöberg E L. A gravimetric method to determine horizontal stress field due to flow in the mantle in Fennoscandia[J]. Geosciences Journal, 2019, 23(3): 377-389.

DOI

[4]
Jan N, Sebastian W, Moritz L et al. Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate[J]. Nature Communications, 2020, 11(1): 2201.

[5]
Yuan M, Li M, Liu H et al. Subsidence monitoring base on SBAS-InSAR and slope stability analysis method for damage analysis in mountainous mining subsidence regions[J]. Remote Sensing, 2021, 13(16): 3107.

DOI

[6]
Zhao R, Li Z, Feng G et al. Monitoring surface deformation over permafrost with an improved SBAS-InSAR algorithm: With emphasis on climatic factors modeling[J]. Remote Sensing of Environment, 2016, 184: 276-287.

DOI

[7]
Daout S, Dini B, Haeberli W et al. Ice loss in the Northeastern Tibetan Plateau permafrost as seen by 16 yr of ESA SAR missions [J]. Earth and Planetary Science Letters, 2020, 545(16): 116404.

[8]
邬光剑, 姚檀栋, 王伟财, 等. 青藏高原及周边地区的冰川灾害[J]. 中国科学院院刊, 2019, 34(11): 1285-1292.

Wu Guangjian, Yao Tandong, Wang Weicai et al. Glacial hazards on Tibetan Plateau and surrounding alpines. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1285-1292.

[9]
Murton J B. What and where are periglacial landscapes?[J]. Permafrost and Periglacial Processes, 2021, 32(2): 186-212.

DOI

[10]
Rouyet L, Lauknes T, Christiansen Hanne H et al. Seasonal dynamics of a permafrost landscape, Adventdalen, Svalbard, investigated by InSAR[J]. Remote Sensing of Environment, 2019, 231: 0034-4257.

[11]
Zhu J, Li Zhiwei, Hu Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1717.

[12]
Monserrat O, Crosetto M, Luzi G. A review of ground-based SAR interferometry for deformation measurement[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93: 40-48.

DOI

[13]
Ge L, Chang H C, Janssen V et al. Integration of GPS, radar interferometry and GIS for ground deformation monitoring[C]//Toyko: Proceedings of 2003 International Symposium on GPS/GNSS, 2003.

[14]
Raucoules D, Colesanti C, Carnec C. Use of SAR interferometry for detecting and assessing ground subsidence[J]. Comptes Rendus Geoscience, 2007, 339(5): 289-302.

DOI

[15]
Lanari R, Mora O, Manunta M et al. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7): 1377-1386.

DOI

[16]
Berardino P, Fornaro G, Lanari R et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383.

DOI

[17]
Perissin D, Wang T. Time-series InSAR applications over urban areas in China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 4(1): 92-100.

[18]
Meisina C, Zucca F, Fossati D et al. Ground deformation monitoring by using the permanent scatterers technique: The example of the Oltrepo Pavese (Lombardia, Italy)[J]. Engineering Geology, 2006, 88(3-4): 240-259.

DOI

[19]
Li Shanshan, Li Zhiwei, Hu Jun et al. Investigation of the seasonal oscillation of the permafrost over Qinghai-Tibet Plateau with SBAS-InSAR algorithm[J]. Chinese Journal of Geophysics, 2013, 56(5): 1476-1486.

[20]
Casu F, Manzo M, Lanari R. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from D-InSAR data[J]. Remote Sensing of Environment, 2006, 102(3-4): 195-210.

DOI

[21]
Yang H, Peng J, Wang B et al. Ground deformation monitoring of Zhengzhou city from 2012 to 2013 using an improved IPTA[J]. Natural Hazards, 2016, 80: 1-17.

DOI

[22]
Baran I, Stewart M P, Kampes B M et al. A modification to the Goldstein radar interferogram filter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(9): 2114-2118.

DOI

[23]
Uhlemann S, Smith A, Chambers J et al. Assessment of ground-based monitoring techniques applied to landslide investigations[J]. Geomorphology, 2016, 253: 438-451.

DOI

[24]
Chuang J, Lei W, Xuexiang Y et al. Prediction of 3D deformation due to large gradient mining subsidence based on InSAR and constraints of IDPIM model[J]. International Journal of Remote Sensing, 2021, 42(1): 208-239.

[25]
Zefa Y, Zhiwei L, Jianjun Z et al. An InSAR-based temporal probability integral method and its application for predicting mining-induced dynamic deformations and assessing progressive damage to surface buildings[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(2): 472-484.

[26]
Xue F, Lyu X. Applying time series interferometric synthetic aperture radar and the unscented Kalman filter to predict deformations in Maoxian landslide[J]. Journal of Applied Remote Sensing, 2019, 13(1): 014509.

[27]
Gharehdaghi M, Fakher A, Cheshomi A. The combined use of long-term multi-sensor InSAR analysis and finite element simulation to predict land subsidence[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019, XLII-4/W18421-427.

[28]
Yun S, Qianwen L, Xin M et al. On time-series InSAR by SA-SVR algorithm: Prediction and analysis of mining subsidence[J]. Journal of Sensors, 2020(1):8860225.

[29]
李金超, 高飞, 鲁加国, 等. 基于SBAS-InSAR和GM-SVR的居民区形变监测与预测[J]. 大地测量与地球动力学, 2019, 39(8): 837-842.

Li Jinchao, Gao Fei, LuJiaguo et al. Deformation monitoring and prediction of residential areas based on SBAS-InSAR and GM-SVR. Journal of Geodesy and Geodynamics, 2019, 39(8): 837-842.

[30]
Ma P, Zhang F. Prediction of InSAR time-series deformation using deep convolutional neural networks[J]. Remote Sensing Letters, 2020, 11(2): 137-145.

DOI

[31]
郭澳庆, 胡俊, 郑万基, 等. 时序InSAR滑坡形变监测与预测的N-BEATS深度学习法——以新铺滑坡为例[J]. 测绘学报, 2022, 51(10): 2171-2182.

DOI

Guo Aoqing, Hu Jun, Zheng Wanji et al. N-BEATS deep learning method for landslide deformation monitoring and prediction based on InSAR: A case study of Xinpu landslide. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2171-2182.

DOI

[32]
龙飞, 龚诚, 黄海, 等. 藏东南直白沟冰崩型泥石流孕灾条件与动力特征[J]. 水土保持通报, 2022, 42(6): 31-38.

Long Fei, Gong Cheng, Huang Hai et al. Formation conditions and dynamic characteristics of debris flow triggered by an ice avalanche at Zhibai gully in Southeast Tibet. Bulletin of Soil and Water Conservation, 2022, 42(6): 31-38.

[33]
Lin Y T, Chen Y K, Yang K H et al. Integrating InSAR observables and multiple geological factors for landslide susceptibility assessment[J]. Applied Sciences, 2021, 11(16): 7289.

DOI

[34]
Lewkowicz A G, Way R G. Extremes of summer climate trigger thousands of thermokarst landslides in a high arctic environment[J]. Nature Communications, 2019, 10(1): 1329.

DOI

[35]
Kuradusenge M, Kumaran S, Zennaro M. Rainfall-induced landslide prediction using machine learning models: The case of Ngororero District, Rwanda[J]. International Journal of Environmental Research and Public Health, 2020, 17(11): 4147.

DOI

[36]
Cui Y, Jiang Y, Guo C. Investigation of the initiation of shallow failure in widely graded loose soil slopes considering interstitial flow and surface runoff[J]. Landslides, 2019, 16(4): 815-828.

DOI

[37]
Dong X, Liu C, Li M et al. Variations in active layer soil hydrothermal dynamics of typical wetlands in permafrost region in the Great Hing'an Mountains, Northeast China[J]. Ecological Indicators, 2021, 129: 107880.

DOI

[38]
Yang X, Jiang A, Zheng S. Analysis of the effect of freeze-thaw cycles and creep characteristics on slope stability[J]. Arabian Journal of Geosciences, 2021, 14(11): 1033.

[39]
Carlà T, Intrieri E, Raspini F et al. Perspectives on the prediction of catastrophic slope failures from satellite InSAR[J]. Scientific Reports, 2019, 9(1): 14137.

[40]
周保, 魏刚, 张永艳, 等. 不同地表条件下青藏公路对多年冻土的热影响差异研究[J]. 冰川冻土, 2022, 44(2): 470-484.

Zhou Bao, Wei Gang, Zhang Yongyan et al. Study on the difference of heat effect of Qinghai-Tibet highway on permafrost under different surface conditions. Journal of Glaciology and Geocryology, 2022, 44(2): 470-484.

[41]
Turetsky M R, Abbott B W, Jones M C et al. Carbon release through abrupt permafrost thaw[J]. Nature Geoscience, 2020, 13(2): 138-143.

DOI

[42]
莫宣学. 从岩浆岩看青藏高原地壳的生长演化[J]. 地球科学, 2020, 45(7): 2245-2257.

Mo Xuanxue. Growth and evolution of crust of Tibetan Plateau from perspective of magmatic rocks. Earth Science, 2020, 45(7): 2245-2257.

[43]
易立. 青藏高原隆升对柴达木盆地新生界油气成藏的控制作用[D]. 北京: 中国石油大学, 2022.

Yi Li. Effect of the Tibetan Plateau uplift on the hydrocarbon accumulation of Cenozoic Qaidam Basin. Beijing: China University of Petroleum, 2020.

[44]
母梅, 牟翠翠, 刘和斌, 等. 北半球热融湖塘分布及其甲烷排放潜力[J]. 冰川冻土, 2023, 45(2): 535-547.

Mu Mei, Mu Cuicui, Liu Hebin et al. Distribution and methane emission potential of thermal melt lakes in the Northern Hemisphere. Journal of Glaciology and Geocryology, 2023, 45(2): 535-547.

[45]
McColl S T. Paraglacial rock-slope stability[J]. Geomorphology, 2012, 153: 1-16.

[46]
Patton A I, Rathburn S L, Capps D M. Landslide response to climate change in permafrost regions[J]. Geomorphology, 2019, 340: 116-128.

DOI

[47]
Farbrot H, Isaksen K, Etzelmüller B et al. Ground thermal regime and permafrost distribution under a changing climate in northern Norway[J]. Permafrost and Periglacial Processes, 2013, 24(1): 20-38.

DOI

[48]
López-Martínez J, Serrano E, Schmid T et al. Periglacial processes and landforms in the South Shetland Islands (northern Antarctic Peninsula region)[J]. Geomorphology, 2012, 155: 62-79.

[49]
程国栋, 赵林, 李韧, 等. 青藏高原多年冻土特征、变化及影响[J]. 科学通报, 2019, 64(27): 2783-2795.

DOI

Cheng Guodong, Zhao Lin, Li Ren et al. Characteristics, changes and impacts of permafrost on Qinghai-Tibet Plateau. Chinese Science Bulletin, 2019, 64(27): 2783-2795.

DOI

[50]
赵丹丹, 刘家福, 刘吉平, 等. 东北寒区多年冻土退化的主要研究综述[J]. 科学技术与工程, 2022, 22(30): 13151-13161.

Zhao Dandan, Liu Jiafu, Liu Jiping et al. A review of main studies on permafrost degradation in Northeast China. Science Technology and Engineering, 2022, 22(30): 13151-13161.

[51]
Chen Jie, Wu Tonghua, Zou Defu et al. Magnitudes and patterns of large-scale permafrost ground deformation revealed by Sentinel-1 InSAR on the central Qinghai-Tibet Plateau[J] . Remote Sensing of Environment, 2022, 268: 112778.

[52]
金会军, 赵林, 王绍令, 等. 青藏公路沿线冻土的地温特征及退化方式[J]. 中国科学D辑: 地球科学, 2006, 36(11): 1009-1019.

Jin Huijun, Zhao Lin, Wang Shaoling et al. Ground temperature characteristics and degradation mode of frozen soil along Qinghai-Tibet Highway. Chinese Science D: Earth Science,2006, 36(11): 1009-1019.

[53]
Singh H, Pandey C A . Land deformation monitoring using optical remote sensing and PS-InSAR technique nearby Gangotri glacier in higher Himalayas[J]. Modeling Earth Systems and Environment, 2020, 7(1): 1-13.

[54]
Zhang Z, Wang M, Wu Z et al. Permafrost deformation monitoring along the Qinghai-Tibet Plateau engineering corridor using InSAR observations with multi-sensor SAR datasets from 1997—2018[J]. Sensors, 2019, 19(23): 5306.

DOI

[55]
Bhasin R, Grimstad E, Larsen J O et al. Landslide hazards and mitigation measures at Gangtok, Sikkim Himalaya[J]. Engineering Geology, 2002, 64(4): 351-368.

DOI

[56]
Petrakov D A, Chernomorets S, Evans S G et al. Catastrophic glacial multi-phase mass movements: A special type of glacial hazard[J]. Advances in Geosciences, 2008, 14: 211-218.

[57]
刘世博, 赵林, 汪凌霄, 等. InSAR技术在多年冻土区形变监测的应用[J]. 冰川冻土, 2021, 43(4): 964-975.

Liu Shibo, Zhao Lin, Wang Lingxiao et al. Application of InSAR technology in deformation monitoring of permafrost regions. Journal of Glaciology and Geocryology, 2021, 43(4): 964-975.

[58]
张明礼, 周志雄, 周凤玺, 等. 夏季降雨增加对多年冻土活动层水热状态的影响研究[J]. 岩土力学, 2022, 43(12): 3335-3346.

Zhang Mingli, Zhou Zhixiong, Zhou Fengxi et al. Effects of increased summer rainfall on the thermal-moisture dynamics of permafrost active layer. Rock and Soil Mechanics, 2022, 43(12): 3335-3346.

[59]
刘传正, 吕杰堂, 童立强, 等. 雅鲁藏布江色东普沟崩滑−碎屑流堵江灾害初步研究[J].中国地质, 2019, 46(2):219-234.

Liu Chuanzheng, Lyu Jietang, Tong Liqiang et al. Research on glacial/rock fall-landslide-debris flows in Sedongpu basin along Yarlung Zangbo River in Tibet. Geology in China, 2019, 46(2): 219-234.

[60]
孙美平, 刘时银, 姚晓军, 等. 2013年西藏嘉黎县“7.5”冰湖溃决洪水成因及潜在危害[J].冰川冻土, 2014, 36(1): 158-165.

Sun Meiping, Liu Shiyin, Yao Xiaojun et al. The cause and potential hazard of glacial lake outburst flood occurred on July 5, 2013 in Jiali County, Tibet. Journal of Glaciology and Geocryology, 2014, 36(1): 158-165.

文章导航

/