城市知识网络与知识生产的协同演化研究——以中国三大城市群为例
王传阳(1999—),男,山东临沂人,博士研究生,研究方向为城市网络和东北振兴。E-mail: wangchuanyang@iga.ac.cn |
收稿日期: 2023-03-14
修回日期: 2023-07-21
网络出版日期: 2024-08-12
基金资助
国家自然科学基金项目(42371209)
山东省自然科学基金项目(ZR2023MD049)
版权
Synergistic evolution of knowledge network and knowledge production of cities: A case study of the three major urban agglomerations in China
Received date: 2023-03-14
Revised date: 2023-07-21
Online published: 2024-08-12
Supported by
National Natural Science Foundation of China(42371209)
Natural Science Foundation of Shandong Province(ZR2023MD049)
Copyright
知识经济时代,知识网络联系深刻影响着城市的知识生产能力,知识生产的反馈机制也是理解知识网络演化的关键因素。本文以中国东部沿海地区京津冀、长三角和珠三角三大城市群62个地级及以上城市为研究单元,基于2001—2020年中国专利权转移数据和隶属联系模型构建城市知识网络,采用基于随机行动者的网络动力学模型从内生结构效应、行动者−关系效应和协变量网络效应3个维度定量解析了城市知识网络与知识生产的协同演化过程。研究发现:① 城市知识网络与知识生产的演化过程总体呈现相互促进的协同特征,即城市知识生产水平的提高增加了城市发出和接收网络链接关系的概率,同时城市知识网络的演化特征也会进一步促进城市知识生产活动的开展。② 城市知识网络与知识生产的协同演化过程受到路径依赖机制、多维邻近性机制的共同影响。③ 城市知识网络与知识生产的协同演化路径因城市所属城市群的不同进而表现出异质性特征。
王传阳 , 盛科荣 , 张杰 , 李晓瑞 . 城市知识网络与知识生产的协同演化研究——以中国三大城市群为例[J]. 地理科学, 2024 , 44(7) : 1178 -1187 . DOI: 10.13249/j.cnki.sgs.20221121
In the knowledge economy era, the interplay between knowledge network embeddedness and cities’ knowledge production is crucial but understudied. This paper examines this relationship in 62 cities within China's the Beijing-Tianjin-Hebei, the Yangtze River Delta, and the Pearl River Delta urban agglomerations. Using patent transfer data from 2001 to 2020 to model urban networks and measuring knowledge production by patent applications, we apply stochastic actor-oriented models to analyze the co-evolution of network embeddedness and knowledge production. Three conclusions are drawn: 1) The empirical results show a co-evolution characteristic that mutual promotion between knowledge network and knowledge production. The improvement of knowledge production in cities increase the probability of establishing knowledge network link between cities, at the same time the embedding characteristics in knowledge network will in turn further promote knowledge production capacity in cities. 2) The co-evolution process between knowledge network and knowledge production in cities is jointly affected by the path-dependent mechanism and the multidimensional proximity mechanism. Cities with rich knowledge network links tend to send and receive more knowledge network links. Cities in geographical proximity, culture proximity and organization proximity have more opportunities to establish knowledge network links, but there are differences in the multidimensional proximity mechanisms of different urban agglomerations. 3) The co-evolution process of cities in knowledge networks and knowledge production has heterogeneous characteristics depending on the industrial division of labor and the internal spatial structure of the city cluster in which they are located. The establishment of network links in the Beijing-Tianjin-Hebei urban agglomeration is overly dependent on the core cities of knowledge production in the agglomeration; the deep development of network links in the Yangtze River Delta urban agglomeration increases the probability of establishing network links among the edge cities of knowledge production in the agglomeration and between the edge cities and the core cities; the development of network links in the Pearl River Delta urban agglomeration show heterogeneous characteristics and the knowledge production in the edge cities is more dependent on the radiation drive of the core cities. In the future, research should use comprehensive metrics to provide a deep portrayal of knowledge networks and a comprehensive portrayal of the synergistic evolution of knowledge networks and knowledge production based on different approaches.
表1 SAOMs中的网络效应和变量描述Table 1 Network effects and variable descriptions in SAOMs |
影响因素类型 | 效应 | 公式 | 变量描述 |
知识网络演化 的影响因素 | 密度效应(Den) | $ {\displaystyle\sum }_{j}{x}_{ij} $ | 网络联系的形成受到已有网络联系数量的影响 |
互惠效应(Rec) | $ {\displaystyle\sum }_{j}{x}_{ij}{x}_{ji} $ | 城市间双向网络关系数量增多 | |
出度聚敛效应(Ops) | $ {\displaystyle\sum }_{j}{x}_{ij}\sqrt{{x}_{j+}} $ | 出度值较高的城市倾向于接收更多的网络链接关系 | |
入度聚敛效应(Ips) | $ {\displaystyle\sum }_{j}{x}_{ij}\sqrt{{x}_{+j}} $ | 入度值较高的城市倾向于接收更多的网络链接关系 | |
出度扩张效应(Oas) | $ {x}_{i+}\sqrt{{x}_{i+}} $ | 出度值较高的城市倾向于发送更多的网络链接关系 | |
多维邻近矩阵(X) | $ {\displaystyle\sum }_{j}{x}_{ij}{w}_{ij} $ | 多维邻近关系影响着城市网络链接关系的建立 | |
接收者效应(val) | $ {\displaystyle\sum }_{j}{x}_{ij}({v}_{j}-\bar {v}) $ | 城市属性值较高的城市更倾向于接收更多的网络链接关系 | |
发送者效应(veg) | $ {\displaystyle\sum }_{j}{x}_{ij}({v}_{i}-\bar {v}) $ | 城市属性值较高的城市更倾向于发送更多的网络链接关系 | |
离散数据趋同效应(vsi) | $ {\displaystyle\sum }_{j}{x}_{ij}{sim}_{ij} $ | 城市属性值相似的城市间更倾向于建立更多网络链接关系 | |
二值数据趋同效应(vsa) | $ {\displaystyle\sum }_{j}{x}_{ij}I({v}_{i}={v}_{j}) $ | 城市类型相同的城市间更倾向于建立更多的网络链接关系 | |
知识生产演化 的影响因素 | 线性效应(Lin) | ${ {\textit{z} } }_{i}-\bar { {\textit{z} } }$ | 衡量知识生产整体增长趋势 |
二次型效应(Qua) | $ {\left({{\textit{z}}}_{i}-\bar {{\textit{z}}}\right)}^{\text{2}} $ | 测度知识生产分布的基本形状 | |
出度效应(Odg) | $ \left({{\textit{z}}}_{i}-\bar {{\textit{z}}}\right){\displaystyle\sum }_{j}{x}_{ij} $ | 城市知识网络出度的增加促进了城市的知识生产水平 |
表2 知识网络与知识生产的SAOMs估计结果Table 2 Regression results of SAOMs of knowledge network and knowledge production |
模型(1) 三大城市群总体 | 模型(2) 三大城市群总体 | |||||
估计系数 | 标准误 | 估计系数 | 标准误 | |||
知识网络演化 的影响因素 | 密度效应(Den) | –2.9720*** | 0.1674 | –3.1998*** | 0.1701 | |
互惠效应(Rec) | 1.0043*** | 0.0655 | 0.7470*** | 0.0660 | ||
出度聚敛效应(Ops) | –0.2427*** | 0.0521 | –0.1968*** | 0.0433 | ||
入度聚敛效应(Ips) | 0.4567*** | 0.0453 | 0.4868*** | 0.0537 | ||
出度扩张效应(Oas) | 0.2847*** | 0.0336 | 0.2812*** | 0.0321 | ||
地理邻近矩阵(Geo) | 1.3311*** | 0.0909 | ||||
文化邻近矩阵(Cul ) | 0.5663*** | 0.0766 | ||||
组织邻近矩阵(Org) | 0.1154** | 0.0589 | ||||
认知邻近矩阵(Cog) | –0.1557 | 0.8006 | ||||
人口接收者效应(Pal) | 0.1249** | 0.0492 | ||||
人口发送者效应(Peg) | –0.0389 | 0.0677 | ||||
人口趋同效应(Psa) | 0.0683 | 0.0456 | ||||
经济接收者效应(Gal) | –0.0227 | 0.0803 | ||||
经济发送者效应(Geg) | 0.2496** | 0.1072 | ||||
经济趋同效应(Gsa) | –0.2162*** | 0.0605 | ||||
知识接收者效应(离散)(Kal) | 0.0192*** | 0.0030 | 0.0171*** | 0.0031 | ||
知识接收者效应(二值)(Keg) | 0.0250*** | 0.0032 | 0.0218*** | 0.0032 | ||
知识趋同效应(Ksi) | –0.7824*** | 0.1306 | –0.7726*** | 0.1537 | ||
知识生产演化 的影响因素 | 线性效应(Lin) | –0.0507** | 0.0198 | –0.0509** | 0.0212 | |
二次型效应(Qua) | –0.0009* | 0.0005 | –0.0009* | 0.0005 | ||
出度效应(Odg) | 0.0050*** | 0.0016 | 0.0050*** | 0.0017 |
注:***、**、*分别表示 wald 检验在 1% 、5% 和 10% 的水平上显著。空白处表示该变量未被引入。 |
表3 知识网络与知识生产的SAOMs异质性检验结果Table 3 Heterogeneity regression results of SAOMs of knowledge network and knowledge production |
模型(3) 京津冀城市群 | 模型(4) 长三角城市群 | 模型(5) 珠三角城市群 | |||||||
估计系数 | 标准误 | 估计系数 | 标准误 | 估计系数 | 标准误 | ||||
知识网络演化 的影响因素 | 密度效应(Den) | –3.3680** | 1.5918 | –2.0988*** | 0.3534 | –0.8353 | 1.2195 | ||
互惠效应(Rec) | 0.4158 | 0.4090 | 0.6517*** | 0.1330 | 1.0026*** | 0.2394 | |||
出度聚敛效应(Ops) | 1.6948 | 1.4100 | –0.1635 | 0.1512 | 0.9583 | 0.6284 | |||
入度聚敛效应(Ips) | 0.1875 | 0.6930 | 0.4122*** | 0.1148 | –0.1541 | 0.4455 | |||
出度扩张效应(Oas) | –0.2509 | 0.4798 | 0.2143** | 0.0797 | –0.3498 | 0.3886 | |||
地理邻近矩阵(Geo) | 0.9609*** | 0.3137 | 0.8968*** | 0.1287 | 1.3682*** | 0.2806 | |||
文化邻近矩阵(Cul) | 0.9236*** | 0.3479 | 0.0643 | 0.1144 | 0.1022 | 0.2038 | |||
组织邻近矩阵(Org) | –0.3791 | 0.3748 | –6.8983** | 3.3725 | –1.4313 | 3.3970 | |||
认知邻近矩阵(Cog) | –8.1138** | 3.8040 | 0.2085 | 0.1788 | 0.1254 | 0.2704 | |||
人口接收者效应(Pal) | –0.5335 | 0.5103 | –0.3017** | 0.1470 | –0.3473 | 0.6148 | |||
人口发送者效应(Peg) | 0.2850 | 0.4533 | 0.1450 | 0.1628 | 0.5324 | 0.8557 | |||
人口趋同效应(Psa) | 0.1064 | 0.3474 | 0.2021* | 0.1086 | –0.9340* | 0.4757 | |||
经济接收者效应(Gal) | –1.1533 | 1.2218 | 0.1521 | 0.1099 | –0.0964 | 0.2256 | |||
经济发送者效应(Geg) | 2.0284** | 1.0012 | 0.2016 | 0.1377 | 0.3972 | 0.2807 | |||
经济趋同效应(Gsa) | – | 0.4116 | 0.0881 | 0.0917 | –0.0056 | 0.1753 | |||
知识接收者效应(离散)(Kal) | –0.0564 | 0.0695 | 0.0414*** | 0.0127 | 0.0274 | 0.0399 | |||
知识接收者效应(二值)(Keg) | 0.1172* | 0.0658 | 0.0527*** | 0.0153 | 0.2047*** | 0.0612 | |||
知识趋同效应(Ksi) | –0.4719 | 0.5947 | –0.8140*** | 0.2487 | –2.2556*** | 0.6851 | |||
知识生产演化 的影响因素 | 线性效应(Lin) | –0.3879 | 0.2479 | –0.1321 | 0.0853 | –0.3423* | 0.1879 | ||
二次型效应(Qua) | –0.0050 | 0.0194 | –0.0036 | 0.0038 | –0.0131 | 0.0099 | |||
出度效应(Odg) | 0.1432* | 0.0837 | 0.0193* | 0.0107 | 0.0629* | 0.0325 |
注:***、**、*分别表示wald检验在 1% 、5% 和 10% 的水平上显著。 |
[1] |
马海涛. 知识流动空间的城市关系建构与创新网络模拟[J]. 地理学报, 2020, 75(4): 708-721.
Ma Haitao. The theoretical construction and network simulation of intercity innovative relationships in knowledge flow space. Acta Geographica Sinica, 2020, 75(4): 708-721.
|
[2] |
Bathelt H, Malmberg A, Maskell P. Clusters and knowledge: Local buzz, global pipelines and the process of knowledge creation[J]. Progress in Human Geography, 2004, 28(1): 31-56.
|
[3] |
Rozenblat C. Opening the black box of agglomeration economies for measuring cities’ competitiveness through international firm networks[J]. Urban Studies, 2010, 47(13): 2841-2865.
|
[4] |
盛科荣, 张杰, 张红霞. 上市公司500强企业网络嵌入对中国城市经济增长的影响[J]. 地理学报, 2021, 76(4): 818-834.
Sheng Kerong, Zhangjie, Zhang Hongxia. Network embedding and urban economic growth in China: A study based on the corporate networks of top 500 public companies. Acta Geographica Sinica, 2021, 76(4): 818-834.
|
[5] |
戴靓, 曹湛, 张维阳, 等. 多重空间流视角下长三角城市网络特征分析[J]. 长江流域资源与环境, 2020, 29(6): 1280-1289.
Dai Liang, Cao Zhan, Zhang Weiyang et al. Comparative analysis of urban networks in the Yangtze River Delta based on multiplex intercity flows. Resources and Environment in the Yangtze Basin, 2020, 29(6): 1280-1289.
|
[6] |
方创琳, 周成虎, 顾朝林, 等. 特大城市群地区城镇化与生态环境交互耦合效应解析的理论框架及技术路径[J]. 地理学报, 2016, 71(4): 531-550.
Fang Chuanglin, Zhou Chenghu, Gu Chaolin et al. Theoretical analysis of interactive coupled effects between urbanization and eco-environment in mega-urban agglomerations. Acta Geographica Sinica, 2016, 71(4): 531-550.
|
[7] |
黄晓东, 马海涛, 苗长虹. 基于创新企业的中国城市网络联系特征[J]. 地理学报, 2021, 76(4): 835-852.
Huang Xiaodong, Ma Haitao, Miao Changhong. Connectivity characteristics for city networks in China based on innovative enterprises. Acta Geographica Sinica, 2021, 76(4): 835-852.
|
[8] |
刘承良, 闫姗姗. 中国跨国城际技术通道的空间演化及其影响因素[J]. 地理学报, 2022, 77(2): 331-352.
Liu Chengliang, Yan Shanshan. Spatial evolution and determinants of transnational technology transfer network in China. Acta Geographica Sinica, 2022, 77(2): 331-352.
|
[9] |
周锐波, 邱奕锋, 胡耀宗. 中国城市创新网络演化特征及多维邻近性机制[J]. 经济地理, 2021, 41(5): 1-10.
Zhou Ruibo, Qiu Yifeng, Hu Yaozong. Characteristics, evolution and mechanism of inter-city innovation network in China: From a perspective of multi-dimensional proximity. Economic Geography, 2021, 41(5): 1-10.
|
[10] |
李丹丹, 汪涛, 魏也华, 等. 中国城市尺度科学知识网络与技术知识网络结构的时空复杂性[J]. 地理研究, 2015, 34(3): 525-540.
Li Dandan, Wang Tao, Wei Yehua et al. Spatial and temporal complexity of scientific knowledge network and technological knowledge network on China's urban scale. Geographical Research, 2015, 34(3): 525-540.
|
[11] |
周灿, 曾刚, 曹贤忠. 中国城市创新网络结构与创新能力研究[J]. 地理研究, 2017, 36(7): 1297-1308.
Zhou Can, Zeng Gang, Cao Xianzhong. Chinese inter-city innovation networks structure and city innovation capability. Geographical Research, 2017, 36(7): 1297-1308.
|
[12] |
马双, 曾刚. 多尺度视角下中国城市创新网络格局及邻近性机理分析[J]. 人文地理, 2020, 35(1): 95-103.
Ma Shuang, Zeng Gang. Analysis of China's urban innovation network pattern and its proximity mechanism from a multi-scale perspective. Human Geography, 2020, 35(1): 95-103.
|
[13] |
Li Y, Luo W. Influencing factors of knowledge cooperation in urban agglomeration on Yangtze River Delta from the perspective of innovation network[J].Journal of Physics: Conference Series, 2021, 1852(4): 042041.
|
[14] |
曹湛, 戴靓, 吴康, 等. 全球城市知识合作网络演化的结构特征与驱动因素[J]. 地理研究, 2022, 41(4): 1072-1091.
Cao Zhan, Dai Liang, Wu Kang et al. Structural features and driving factors of the evolution of the global interurban knowledge collaboration network. Geographical Research, 2022, 41(4): 1072-1091.
|
[15] |
Li D, Wei Y D, Wang T. Spatial and temporal evolution of urban innovation network in China[J]. Habitat International, 2015, 49: 484-496.
|
[16] |
Liu Y, Shao X, Tang M et al. Spatio-temporal evolution of green innovation network and its multidimensional proximity analysis: Empirical evidence from China[J]. Journal of Cleaner Production, 2021, 283: 124649.
|
[17] |
刘晔, 曾经元, 王若宇, 等. 科研人才集聚对中国区域创新产出的影响[J]. 经济地理, 2019, 39(7): 139-147.
Liu Ye, Zeng Jingyuan, Wang Ruoyu et al. The relationship between geographical concentration of researchers and regional innovation in China. Economic Geography, 2019, 39(7): 139-147.
|
[18] |
刘晔, 徐楦钫, 马海涛. 中国城市人力资本水平与人口集聚对创新产出的影响[J]. 地理科学, 2021, 41(6): 923-932.
Liu Ye, Xu Xuanfang, Ma Haitao. Impact of human capital stock and population concentration on innovative output in China. Scientia Geographica Sinica, 2021, 41(6): 923-932.
|
[19] |
谭俊涛, 张平宇, 李静. 中国区域创新绩效时空演变特征及其影响因素研究[J]. 地理科学, 2016, 36(1): 39-46.
Tan Juntao, Zhang Pingyu, Li Jing. Spatio-temporal characteristics of regional innovation performance and its influencing factors in China. Scientia Geographica Sinica, 2016, 36(1): 39-46.
|
[20] |
李敬, 刘洋. 中国国民经济循环: 结构与区域网络关系透视[J]. 经济研究, 2022, 57(2): 27-42.
Li Jing, Liu Yang. China's national economic circulation: A perspective of the structural and regional network relations. Economic Research Journal, 2022, 57(2): 27-42.
|
[21] |
Antonelli C. Pecuniary externalities and the localized generation of technological knowledge[M]. Cheltenham: Edward Elgar, 2010.
|
[22] |
Gui Q, Liu C, Du D. Does network position foster knowledge production? Evidence from international scientific collaboration network[J]. Growth and Change, 2018, 49(4): 594-611.
|
[23] |
陈玉, 孙斌栋. 京津冀存在“集聚阴影”吗——大城市的区域经济影响[J]. 地理研究, 2017, 36(10): 1936-1946.
Chen Yu, Sun Bindong. Does “agglomeration shadow” exist in Beijing-Tianjin-Hebei region? Large cities’ impact on regional economic growth. Geographical Research, 2017, 36(10): 1936-1946.
|
[24] |
Alderson A S, Beckfield J, Sprague-Jones J. Intercity relations and globalisation: The evolution of the global urban hierarchy, 1981—2007[J]. Urban Studies, 2010, 47(9): 1899-1923.
|
[25] |
Snijders T A B, Van de Bunt G G, Steglich C E G. Introduction to stochastic actor-based models for network dynamics[J]. Social networks, 2010, 32(1): 44-60.
|
[26] |
Jaffe A B. Technological opportunity and spillovers of R&D: Evidence from firms’ patents, profits and market value[J]. American Economic Review, 1986, 76(5): 984-1001.
|
[27] |
Amati V, Lomi A, Mascia D et al. The co-evolution of organizational and network structure: The role of multilevel mixing and closure mechanisms[J]. Organizational Research Methods, 2021, 24(2): 285-318.
|
[28] |
中国社会科学院语言研究所. 中国语言地图集. 汉语方言卷[M].第2版. 北京: 商务印书馆, 2012.
Institute of Linguistics, Chinese Academy of Social Sciences. Language atlas of China: Chinese dialect volume. 2nd edition. Beijing: The Commercial Press, 2012.
|
[29] |
国家统计局. 中国城市统计年鉴[M]. 2001—2020. 北京: 中国统计出版社, 2001—2020.
National Bureau of Statistics. China city statistical yearbook. 2001—2020. Beijing: China Statistics Press, 2001—2020.
|
[30] |
Braczyk H J, Cooke P, Heidenreich M. Regional innovation systems: The role of governances in a globalized world[M]. New York: Routledge, 2003.
|
[31] |
Bailey N, Turok I. Central Scotland as a polycentric urban region: Useful planning concept or chimera?[J]. Urban Studies, 2001, 38(4): 697-715.
|
[32] |
Meijers E. Polycentric urban regions and the quest for synergy: Is a network of cities more than the sum of the parts?[J]. Urban studies, 2005, 42(4): 765-781.
|
[33] |
刘靖, 张岩. 国外城市群整合研究进展与实践经验[J]. 世界地理研究, 2015, 24(3): 83-90.
Liu Jing, Zhang Yan. Research progress and international experience of urban agglomeration integration. World Regional Studies, 2015, 24(3): 83-90.
|
/
〈 |
|
〉 |