1980—2020年内蒙古暖季复合干旱热浪事件变化特征
乌吉斯古冷(2000—),女,蒙古族,内蒙古通辽人,硕士研究生,研究方向为极端复合事件及生态遥感。E-mail: 15690954161@163.com |
收稿日期: 2023-05-30
修回日期: 2023-07-27
网络出版日期: 2024-10-23
基金资助
国家自然科学基金地区项目(42261019)
内蒙古自治区高等学校青年科技英才支持计划项目(NJYT22028)
内蒙古师范大学基本科研业务费专项资金(2022JBBJ016)
内蒙古师范大学基本科研业务费专项资金(2022JBQN092)
版权
Analysis of the variation characteristics of compound drought heatwave events during the warm season in Inner Mongolia from 1980 to 2020
Received date: 2023-05-30
Revised date: 2023-07-27
Online published: 2024-10-23
Supported by
National Natural Science Foundation of China(42261019)
Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT22028)
Fundamental Research Funds for the Inner Mongolia Normal University(2022JBBJ016)
Fundamental Research Funds for the Inner Mongolia Normal University(2022JBQN092)
Copyright
为了强化对复合干旱热浪事件(CDHEs)的监测,选择内蒙古作为研究区,基于115个站点数据,运用标准化降水蒸散指数和高温相对阈值法,对该区干旱和热浪事件进行定义与识别。并在此基础上,构建复合干旱热浪强度指数(CDHMI)进行复合干旱热浪频率(CDHF)统计,继而开展干旱、热浪和CDHEs时空变化特征研究。结果显示:暖季(5—10月)不同时间尺度(1个月和6个月尺度)干旱强度皆呈增加趋势。内蒙古西部和通辽市中部干旱频发,中东部地区干旱发生频率显著增加。热浪频率显著增加、热浪期显著延长,热浪持续时间和强度呈非显著增加趋势。热浪频率、持续时间和强度总体呈现西高东低的空间分布格局。CDHEs发生的频率和强度呈现显著增加趋势,特别是1998年之后。空间分布上,CDHF高值区集中在锡林郭勒盟和呼伦贝尔市,内蒙古北部地区CDHF明显增多,而高强度CDHMI分布在内蒙古东北和西南地区,增长趋势与CDHF相似。
乌吉斯古冷 , 郭恩亮 , 王永芳 , 包刚 , 康尧 . 1980—2020年内蒙古暖季复合干旱热浪事件变化特征[J]. 地理科学, 2024 , 44(10) : 1871 -1880 . DOI: 10.13249/j.cnki.sgs.20230511
To enhance the monitoring of compound drought and heatwave events (CDHEs), Inner Mongolia was selected as the study area. Based on data from 115 stations, the drought and heatwave events in this region were defined and identified using the Standardized Precipitation Evapotranspiration Index and the high-temperature relative threshold method. On this basis, a Compound Drought and Heatwave Magnitude Index (CDHMI) was constructed to statistically analyze the Compound Drought and Heatwave Frequency (CDHF), and then a study on the spatiotemporal variation characteristics of droughts, heatwaves, and CDHEs was carried out. The results show that during the warm season (May to October), the intensity of droughts at different time scales (1-month and 6-month scales) is increasing. The western part of Inner Mongolia and the central part of Tongliao City are prone to frequent droughts, and the frequency of droughts in the central and eastern regions has significantly increased. The frequency of heatwaves has significantly increased, and the period of heatwaves has been significantly extended, with the duration and intensity of heatwaves showing a non-significant increasing trend. The frequency, duration, and intensity of heatwaves generally show a spatial distribution pattern of being higher in the west and lower in the east. The frequency and intensity of CDHEs have shown a significant increasing trend, especially after 1998. Spatially, high values of CDHF are concentrated in the Xilingol League and Hulunbuir City, with a significant increase in CDHF in the northern region of Inner Mongolia, while high-intensity CDHMI is distributed in the northeastern and southwestern regions of Inner Mongolia, with a growth trend similar to that of CDHF.
[1] |
孙艺杰, 刘宪锋, 任志远, 等. 1960—2016年黄土高原干旱和热浪时空变化特征[J]. 地理科学进展, 2020, 39(4): 591-601.
Sun Yijie, Liu Xianfeng, Ren Zhiyuan et al. Spatiotemporal changes of droughts and heatwaves on the Loess Plateau during 1960—2016. Progress in Geography, 2020, 39(4): 591-601.
|
[2] |
Barriopedro D, Gouveia C M, Trigo R M et al. The 2009/10 drought in China: Possible causes and impacts on vegetation[J]. Journal of Hydrometeorology, 2012, 13(4): 1251-1267.
|
[3] |
Poumadère M, Mays C, Le Mer S et al. The 2003 heat wave in France: Dangerous climate change here and now[J]. Risk Analysis, 2005, 25(6): 1483-1494.
|
[4] |
李莹, 叶殿秀, 高歌, 等. 2022年夏季中国气候特征及主要天气气候事件[J]. 大气科学学报, 2023, 46(1): 110-118.
Li Ying, Ye Dianxiu, Gao Ge et al. Climate characteristics and major meteorological events in China during the summer of 2022. Transactions of Atmospheric Sciences, 2023, 46(1): 110-118.
|
[5] |
Lesk C, Coffel E, Winter J et al. Stronger temperature–moisture couplings exacerbate the impact of climate warming on global crop yields[J]. Nature food, 2021, 2(9): 683-691.
|
[6] |
Gissing A, Timms M, Browning S et al. Compound natural disasters in Australia: A historical analysis[J]. Environmental Hazards, 2022, 21(2): 159-173.
|
[7] |
Kong Q, Guerreiro S B, Blenkinsop S et al. Increases in summertime concurrent drought and heatwave in Eastern China[J]. Weather and Climate Extremes, 2020, 28: 100242.
|
[8] |
马梓策, 孙鹏, 姚蕊, 等. 内蒙古地区干旱时空变化特征及其对植被的影响[J]. 水土保持学报, 2022, 36(6): 231-240.
Ma Zice, Sun Peng, Yao Rui et al. Temporal and spatial variation of drought and its impact on vegetation in Inner Mongolia. Journal of Soil and Water Conservation, 2022, 36(6): 231-240.
|
[9] |
陈心池, 顾立忠. 基于SPI的旱涝时空演变特征识别及其对大尺度气候因子的响应研究[J]. 广东水利水电, 2018 11 52-58,67.
Chen Xinchi, Gu Lizhong. Spatio-temporal evolutionary identification of dryness/wetness based on SPI and responses to large-scale climate factors. Guangdong Water Resources and Hydropower, 2018 11 52-58,67.
|
[10] |
张钦, 唐海萍, 崔凤琪, 等. 基于标准化降水蒸散指数的呼伦贝尔草原干旱变化特征及趋势分析[J]. 生态学报, 2019, 39(19): 7110-7123.
Zhang Qin, Tang Haiping, Cui Fengqi et al. SPEI-based analysis of drought characteristics and trends in Hulun Buir grassland. Acta Ecologica Sinica, 2019, 39(19): 7110-7123.
|
[11] |
卫捷, 陶诗言, 张庆云. Palmer干旱指数在华北干旱分析中的应用[J]. 地理学报, 2003, 58(z1): 91-99.
Wei Jie, Tao Shiyan, Zhang Qingyun. Analysis of drought in northern China Based on the Palmer severity drought index. Acta Geographica Sinica, 2003, 58(z1): 91-99.
|
[12] |
陈家宁, 孙怀卫, 王建鹏, 等. 综合气象干旱指数改进及其适用性分析[J]. 农业工程学报, 2020, 36(16): 71-77.
Chen Jianing, Sun Huaiwei, Wang Jianpeng et al. Improvement of comprehensive meteorological drought index and its applicability analysis. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(16): 71-77.
|
[13] |
Guo H, Bao A, Ndayisaba F et al. Space-time characterization of drought events and their impacts on vegetation in Central Asia[J]. Journal of Hydrology, 2018, 564: 1165-1178.
|
[14] |
李忆平, 李耀辉. 气象干旱指数在中国的适应性研究进展[J]. 干旱气象, 2017, 35(5): 709-723.
Li Yiping, Li Yaohui. Advances in adaptability of meteorological drought indices in China. Journal of Arid Meteorology, 2017, 35(5): 709-723.
|
[15] |
邢佩, 杨若子, 杜吴鹏, 等. 1961—2017年华北地区高温日数及高温热浪时空变化特征[J]. 地理科学, 2020, 40(8): 1365-1376.
Xing Pei, Yang Ruozi, Du Wupeng et al. Spatiotemporal variation of high temperature day and heat wave in North China during 1961—2017. Scientia Geographica Sinica, 2020, 40(8): 1365-1376.
|
[16] |
Dian Xiu Y, Ji Fu Y, Zheng Hong C et al. Spatial and temporal variations of heat waves in China from 1961 to 2010[J]. Advances in Climate Change Research, 2014, 5(2): 66-73.
|
[17] |
Wang W, Zhang Y, Guo B et al. Compound droughts and heatwaves over the Huai River Basin of China: From a perspective of the magnitude index[J]. Journal of Hydrometeorology, 2021, 22(11): 3107-3119.
|
[18] |
Hao Z, Hao F, Singh V P et al. Changes in the severity of compound drought and hot extremes over global land areas[J]. Environmental Research Letters, 2018, 13(12): 124022.
|
[19] |
申露婷, 张方敏, 黄进, 等. 1981—2018年内蒙古不同等级降水时空变化特征[J]. 气象科学, 2022, 42(2): 162-170.
Shen Luting, Zhang Fangmin, Huang Jin et al. Spatiotemporal variations of different precipitation grades in Inner Mongolia from 1981 to 2018. Journal of the Meteorological Sciences, 2022, 42(2): 162-170.
|
[20] |
He T, Dai X, Li W et al. Response of net primary productivity of vegetation to drought: A case study of Qinba Mountainous area, China (2001—2018)[J]. Ecological Indicators, 2023, 149: 110148.
|
[21] |
张存杰, 刘海波, 宋艳玲, 等. 气象干旱等级(GB/T 20481-2017)[S]. 北京: 中国标准出版社, 2017.
Zhang Cunjie, Liu Haibo, Song Yanling et al. Classification of meteorological drought (GB/T 20481-2017). Beijing: China Standard Press, 2017.
|
[22] |
Luo M, Lau N C, Liu Z et al. An observational investigation of spatiotemporally contiguous heatwaves in China from a 3D perspective[J]. Geophysical Research Letters, 2022, 49(6): e2022GL097714.
|
[23] |
Bian Y, Sun P, Zhang Q et al. Amplification of non-stationary drought to heatwave duration and intensity in eastern China: Spatiotemporal pattern and causes[J]. Journal of Hydrology, 2022, 612: 128154.
|
[24] |
Sen P K. Estimates of the regression coefficient based on kendall’s tau[J]. Journal of the American Statistical Association, 1968, 63(324): 1379-1389.
|
[25] |
马景钊, 郝璐. 基于SPI和SPEI指数的锡林郭勒草原干旱时空变化特征[J]. 草业科学, 2021, 38(12): 2327-2339.
Ma Jingzhao, Hao Lu. Temporal and spatial variation of drought in the Xilingol grassland based on the standardized precipitation index and standardized precipitation evapotranspiration index. Pratacultural Science, 2021, 38(12): 2327-2339.
|
[26] |
苏日罕, 郭恩亮, 王永芳, 等. 1982—2020年内蒙古地区极端气候变化及其对植被的影响[J]. 生态学报, 2023, 43(1): 419-431.
Su Rihan, Guo Enliang, Wang Yongfang et al. Extreme climate change in Inner Mongolia and their impact on vegetation dynamics during 1982—2020. Acta Ecologica Sinica, 2023, 43(1): 419-431.
|
[27] |
杨阳, 赵娜, 岳天祥. 1980—2018年中国极端高温事件时空格局演变特征[J]. 地理科学, 2022, 42(3): 536-547.
Yang Yang, Zhao Na, Yue Tianxiang. Spatio-temporal variations of extreme high temperature event in China from 1980 to 2018. Scientia Geographica Sinica, 2022, 42(3): 536-547.
|
[28] |
Shi Z, Jia G, Zhou Y et al. Amplified intensity and duration of heatwaves by concurrent droughts in China[J]. Atmospheric Research, 2021, 261: 105743.
|
[29] |
张存杰, 谢金南, 李栋梁, 等. 东亚季风对西北地区干旱气候的影响[J]. 高原气象, 2002, 21(2): 193-198.
Zhang Cunjie, Xie Jinnan, Li Dongliang et al. Impact of East-Asian monsoon on drought climate of northwest China. Plateau Meteorology, 2002, 21(2): 193-198.
|
[30] |
马柱国, 符淙斌. 20世纪下半叶全球干旱化的事实及其与大尺度背景的联系[J]. 中国科学(D辑), 2007, 37(2): 222-233.
Ma Zhuguo, Fu Congbin. The fact of global drought in the second half of the 20th century and its connection with large-scale background. Science China Press, 2007, 37(2): 222-233.
|
[31] |
张强, 王胜. 关于干旱和半干旱区陆面水分过程的研究[J]. 干旱气象, 2007, 25(2): 1-4
Zhang Qiang, Wang Sheng. Processes of water transfer over land surface in arid and semi-arid region of China. Journal of Arid Meteorology 2007, 25(2): 1-4.
|
[32] |
张嘉仪, 钱诚. 1960—2018年中国高温热浪的线性趋势分析方法与变化趋势[J]. 气候与环境研究, 2020, 25(3): 225-239.
Zhang Jiayi, Qian Cheng. Linear trends in occurrence of high temperature and heat waves in China for the 1960—2018 period: Method and analysis results. Climatic and Environmental Research, 25 (3): 225-239.
|
[33] |
肖安, 周长艳. 基于超热因子的中国热浪事件气候特征分析[J]. 气象, 2017, 43(8): 943-952.
Xiao An, Zhou Changyan. Characteristics analysis of the heat wave events over China based on excess heat factors. Meteorological Monthly, 2017, 43(8): 943-952.
|
[34] |
王文, 胡彦君, 徐川怡. 1961—2018 年淮河流域热浪事件时空变化特征[J]. 地理科学, 2021, 41(5): 911-921.
Wang Wen, Hu Yanjun, Xu Chuanyi. Spatial-temporal variations of heat waves in the Huaihe River Basin from 1961 to 2018. Scientia Geographica Sinica, 2021, 41(5): 911-921.
|
[35] |
周晓, 黄菲. 中国极端高温事件的年代际突变及其与海温的关系[J]. 中国海洋大学学报(自然科学版), 2015, 45(5): 19-27.
Zhou Xiao, Huang Fei. Decadal shift of the extreme high temperature in China and its relationship with sea surface temperature. Periodical of Ocean University of China, 2015, 45(5): 19-27.
|
[36] |
张英华, 李艳, 李德帅, 等. 中国东部夏季极端高温的空间分布特征及其环流型[J]. 高原气象, 2016, 35(2): 469-483.
Zhang Yinghua, Li Yan, Li Deshuai et al. Study on the space distribution and circulation pattern of extreme high temperature over Eastern China in summer. Plateau Meteorology, 2016, 35(2): 469-483.
|
[37] |
Luo M, Lau N. Heat waves in southern China: Synoptic behavior, long-term change, and urbanization effects[J]. Journal of Climate, 2017, 30(2): 703-720.
|
[38] |
罗鑫玥, 陈明星. 城镇化对气候变化影响的研究进展[J]. 地球科学进展, 2019, 34(9): 984-997.
Luo Xinyue, Chen Mingxing. Research progress on the impact of urbanization on climate change. Advances in Earth Science, 2019, 34(9): 984-997.
|
/
〈 |
|
〉 |