昆明城市降雨特性变化及城市热岛效应的可能影响
金燕(1978—),女,云南楚雄人,高级工程师,主要从事气候变化应用研究。E-mail: apple_jjyy25@163.com |
收稿日期: 2023-07-01
修回日期: 2023-11-20
网络出版日期: 2024-11-28
基金资助
云南省基础研究专项重点基金项目(202201AS070069)
中国气象局气象能力提升联合研究专项(22NLTSZ005)
云南省重点研发计划—社会发展专项(202203AC100006)
云南省重点研发计划—社会发展专项(202403AC100040)
国家自然科学基金(42375043)
中国气象局水文气象重点开放实验室开放研究课题(23SWQXZ008)
版权
Change of urban precipitation characteristics and the possible influence of urban heat island effect in Kunming
Received date: 2023-07-01
Revised date: 2023-11-20
Online published: 2024-11-28
Supported by
Yunnan Province Basic Research Key Fund Project(202201AS070069)
Joint Research Project for Meteorological Capacity Improvement of China Meteorological Administration(22NLTSZ005)
Yunnan Province Key Research and Development Plan—Social Development Special(202203AC100006)
Yunnan Province Key Research and Development Plan—Social Development Special(202403AC100040)
National Natural Science Foundation of China(42375043)
Open Foundation of China Meteorological Administration Hydro-Meteorology Key Laboratory(23SWQXZ008)
Copyright
利用1961—2020年昆明站和太华山站分钟降雨数据,通过对比昆明站不同最小降雨间隔的降雨场数、有效降雨量贡献率和自相关系数的变化,确定昆明地区合理的最小降雨间隔,划分降雨过程;在此基础上比较昆明城市和乡村降雨过程的不同变化,并分析导致城市降雨特性变化的可能原因,得到如下结论:① 昆明以3 h为最小降雨间隔来划分自然降雨场次最为合理。② 昆明地区有效降雨过程占40%,对总降雨量贡献率超95%;与乡村相比,城市年降雨场数在20世纪90年代后呈年代际变化特征,强降雨呈增加趋势。特别地,100.0 mm以上极强降雨增速远高于乡村。③ 20世纪90年代后,昆明市区除微量降雨减少外,其余量级的降雨均有增加,城市降雨历时缩短,强降雨雨峰提前,降雨历时在1 h左右的强降雨由双峰雨型变为单峰雨型。④ 由气候变暖和城市面积扩展共同导致的城市热岛效应增强,致使下垫面温度升高,加速地表蒸发,改变了局地近地面对流活动与水汽条件,是导致昆明城市降雨特性变化的重要原因。
金燕 , 晏红明 , 何雨芩 , 任菊章 , 张明达 , 周群 . 昆明城市降雨特性变化及城市热岛效应的可能影响[J]. 地理科学, 2024 , 44(11) : 2039 -2050 . DOI: 10.13249/j.cnki.sgs.20230666
Using the observation data of minute rainfall at Kunming Station from 1961 to 2020, the reasonable minimum rainfall interval in Kunming area was determined by comparing the changes in the number of rainfall fields, effective rainfall contribution rate, and autocorrelation coefficient distinguished by different minimum rainfall intervals at the station. On this basis, the minute rainfall observation data of the rural representative station (Taihuashan Station) was introduced to divide the rainfall processes of Kunming Station and Taihuashan Station with the minimum rainfall interval, to compare the different changes in urban and rural rainfall processes in Kunming City, and to analyze the possible reasons for the changes in urban rainfall characteristics. The following conclusions were drawn: 1) The minimum rainfall interval for the natural rainfall process in Kunming area was set at 3 hours, which is the most reasonable. 2) The effective rainfall process in Kunming area accounted for more than 40% of the total rainfall process, and the contribution rate of rainfall had exceeded 95%; Compared with rural areas, the number of annual rainfall events in urban areas has shown interdecadal changes since the 1990s, with an increasing trend of heavy rainfall, especially the growth rate of extremely heavy rainfall processes above 100.0 mm, which was much higher than in rural areas. 3) After the 1990s, except for the decrease of trace rainfall, other rainfall in Kunming city has increased. The duration of urban rainfall was shortened and the peak of rainstorm was advanced. The heavy rainfall lasting about 1 hour changed from a bimodal rain pattern to a unimodal rain pattern. 4) The intensification of urban heat island effect caused by climate change and urban expansion leads to an increase in underlying surface temperature, accelerated surface evaporation, local near surface convective activity, and changes in air moisture conditions, which were important reasons for the changes in rainfall characteristics in Kunming City.
表1 不同历时降雨场次的强降雨阈值Table 1 Heavy rainfall threshold of different duration rainfall events |
降雨历时/min | 降雨时长范围/min | 强降雨阈值/mm |
60 | [45,75) | 20.0 |
120 | [105,135) | 24.0 |
180 | [165,195) | 29.0 |
[1] |
IPCC. Climate change 2013: The physical science basis[M]// Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013.
|
[2] |
Goswami B N, Venugopal V, Sengupta D et al. Increasing trend of extreme rain events over India in a warming environment[J]. Science, 2006, 314(5804): 1442-1445.
|
[3] |
Alexander L V, Zhang X, Peterson T C et al. Global observed changes in daily climate extremes of temperature and precipitation[J]. Journal of Geophysical Research, 2006, 111(D5): D05109. doi: 10.1029/2005JD006290.
|
[4] |
Peng J, Ma J, Liu Q Y. Spatial-temporal change of land surface temperature across 285 cities in China: An urban-rural contrast perspective[J]. Science of the Total Environment, 2018, 635: 487-497.
|
[5] |
Zhang C L, Chen F, Miao S G et al. Impacts of urban expansion and future green planting on summer precipitation in the Beijing metropolitan area[J]. J Geophys Res, 2009, 114: D02116. https://doi.org/10.1029/2008JD010328.
|
[6] |
胡楠林, 任志彬, 董禹麟, 等. 中国城市群热岛效应时空演变及其影响因素分析[J]. 地理科学, 2022, 42(9): 1534-1545
Hu Nanlin, Ren Zhibin, Dong Yulin et al. Spatiotemporal evolution of heat island effect and its driving factors in urban agglomerations of China. Scientia Geographica Sinica, 2022, 42(9): 1534-1545.
|
[7] |
Yao C, Yang S, Qian W H et al. Regional summer precipitation events in Asia and their changes in the past decades[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D17): D17107
|
[8] |
孔锋, 王铸, 刘凡, 等. 全球/大洲、区域尺度暴雨时空变化格局(1981—2010)[J]. 北京师范大学学报: 自然科学版, 2016, 52(2): 228-234
Kong Feng, Wang Zhu, Liu Fan et al. Spatiotemporal patterns of global-continental-regional scale heavy rainfall. Journal of Beijing Normal University (Natural Science Edition), 2016, 52(2): 228-234.
|
[9] |
Ajaaj A A, Mishra A K, Khan A A. Urban and peri-urban precipitation and air temperature trends in mega cities of the world using multiple trend analysis methods[J]. Theoretical and Applied Genetics, 2017, 132: 403-418.
|
[10] |
Liu Bingjun,Chen Shiling, Tan Xuezhi et al. Response of precipitation to extensive urbanization over the Pearl River Delta metropolitan region[J]. Environmental Earth Sciences, 2021, 80(9): 1-17.
|
[11] |
Song X, Zhang J, AghaKouchak A et al. Rapid urbanization and changes in spatiotemporal characteristics of precipitation in Beijing metropolitan area[J]. Journal of Geophysical Research, 2014, 119: 11250-211271.
|
[12] |
Wahl T, Jain S, Bender J et al. Increasing risk of compound flooding from storm surge and rainfall for major US cities[J]. Nature Climate Change, 2015, 5: 1093-1097.
|
[13] |
Zhang D L, Lin Y, Zhao P et al. The Beijing extreme rainfall of 21 July 2012: “Right results” but for wrong reasons[J]. Geophys Res Lett, 2013, 40: 1426-1431.
|
[14] |
Nie Yanbo, Sun Jianqi. Moisture sources and transport for extreme precipitation over Henan in July 2021[J]. Geophysical Research Letters, 2022, 49: e2021GL097446
|
[15] |
陶云, 樊风, 段旭, 等. 云南不同气候带气温变化特征[J]. 云南大学学报(自然科学版), 2013, 35(5): 562-660
Tao Yun, Fan Feng, Duan Xu et al. On the features of different climate zones temperature change in Yunnan. Journal of Yunnan University (Natural Sciences Edition), 2013, 35(5): 562-660.
|
[16] |
苏锦兰, 李建, 杨桂荣, 等. 横断山系云岭余脉点苍山东西侧小时降水特性对比分析[J]. 气象, 2015, 41(1): 17-24
Su Jinlan, Li Jian, Yang Guirong et al. Comparative analysis on hourly precipitation features on the east and west sides of Yunling Diancang Mountain in Hengduan Mountains. Meteorological Monthly, 2015, 41(1): 17-24.
|
[17] |
Mal S, Singh R B, Huggel C et al. Introducing linkages between climate change, extreme events, and disaster risk reduction[C]//Mal S et al. Climate change, extreme events and disaster risk reduction: Towards sustainable development goals. Cham: Springer International Publishing, 2018: 1-14.
|
[18] |
马洁华, 孙建奇, 汪君, 等. 2018年夏季中国极端降水及滑坡泥石流灾害预测[J]. 大气科学学报, 2019, 42(1): 93-99
Ma Jiehua, Sun Jianqi, Wang Jun et al. Real-time prediction for 2018 JJA extreme precipitation and landslides. Transactions of Atmospheric Sciences, 2019, 42(1): 93-99.
|
[19] |
金燕, 况雪源, 晏红明, 等. 近55年来云南区域性干旱事件的分布特征和变化趋势研究[J]. 气象, 2018, 44(9): 1169-1178.
Jin Yan, Kuang Xueyuan, Yan Hongming et al. Studies on distribution characteristics and variation trend of the regional drought events over Yunnan in recent 55 years. Meteorological Monthly, 2018, 44(9): 1169-1178.
|
[20] |
金燕, 晏红明, 张茂松, 等. 云南冬半年极端低温事件及大气环流的关系[J]. 高原气象, 2022, 41(5): 1302-1314
Jin Yan, Yan Hongming, Zhang Maosong et al. Relationship between extreme low temperature events and atmospheric circulation in Yunnan during winter half year. Plateau Meteorology. 2022, 41(5): 1302-1314.
|
[21] |
姜勇, 黄初龙. 2019年盛夏昆明一次夜间致灾性强降水的成因分析[J]. 甘肃科学学报, 2020, 32(4): 69-77,96
Jiang Yong, Huang Chulong. Analysis of the causes of a disaster-inducing heavy preciptation at night in Kunming in the midsummer of 2019. Journal of Gansu Sciences, 2020, 32(4): 69-77,96.
|
[22] |
冯萃敏, 魏瞳, 李芬芬, 等. 海绵城市建设技术标准化现状及发展方向[J]. 中国给水排水, 2023, 39(8): 45-52
Feng Cuimin, Wei Tong, Li Fenfen et al. Status analysis and developing trends of the technology standardization for sponge city construction. China Water & Wastewater, 2023, 39(8): 45-52.
|
[23] |
曹经福, 杨艳娟, 郭军, 等. 天津市短时暴雨雨型时空分异及其对城市内涝的影响[J]. 气象与环境学报, 2021, 37(4): 114-121.
Cao Jingfu, Yang Yanjuan, Guo Jun et al. Spatiotemporal differentiation of short-duration rainstorm pattern and its influence on urban waterlogging in Tianjin. Journal of Meteorology and Environment, 2021, 37(4): 114-121.
|
[24] |
张建云, 王银堂, 胡庆芳, 等. 海绵城市建设有关问题讨论[J]. 水科学进展, 2016, 27(6): 793-799
Zhang Jianyun, Wang Yintang, Hu Qingfang et al. Discussion and views on some issues of the sponage city construction in China. Advances in Water Science, 2016, 27(6): 793-799.
|
[25] |
顾正强, 朱玲, 龚强, 等. 辽宁省降雨变化对海绵城市低影响开发雨水系统建设的影响[J]. 气象与环境学报, 2018, 34(5): 76-85
Gu Zhengqiang, Zhu Ling, Gong Qiang et al. Influence of variation in precipitation on the construction of a low-impact-development rain-water system for sponge city in Liaoning Province. Journal of Meteorology and Environment, 2018, 34(5): 76-85.
|
[26] |
刘丽, 曹杰, 何大明, 等. 中国低纬高原汛期强降水事件的年代际变化及其成因研究[J]. 大气科学, 2011, 35(3): 435-443
Liu Li, Cao Jie, He Daming et al. The interdecadal variability of heavy rainfall events in flood season over low-latitude highlands of China and associated causes. Chinese Journal of Atmospheric Sciences, 2011, 35(3): 435-443.
|
[27] |
Fan H, Jinming H U, Daming H E. Trends in precipitation over the low latitude highlands of Yunnan, China[J]. Journal of Geographical Sciences, 2013, 23(6): 1107-1122.
|
[28] |
Li Yungang, He Daming, Hu Jinming et al. Variability of extreme precipitation over Yunnan Province, China 1960—2012[J]. International Journal of Climatology, 2015, 35(2): 245-258.
|
[29] |
百度百科. 昆明市[J/OL]. https://baike.baidu.com/item/昆明市.html.2023-05-10
Baidu Encyclopedia. Kunming. https://baike.baidu.com/item/in kunming.html.2023-05-10.
|
[30] |
王宇. 云南山地气候[M]. 昆明: 云南科技出版社, 2003
Wang Yu. Yunnan mountain climate. Kunming: Yunnan Science and Technology Press, 2003.
|
[31] |
Gong P, Li X C, Zhang W. 40-year (1978—2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing[J]. Science Bulletin, 2019(64): 11,756-763.
|
[32] |
Adams B J, Papa F. Urban stormwater management planning with analytical probabilistic models[J]. Canadian Journal of Civil Engineering, 2000, 28(3): 545
|
[33] |
高绍凤, 陈万隆, 朱超群, 等. 应用气候学[M]. 北京: 气象出版社, 2021
Gao Shaofeng, Chen Wanlong, Zhu Chaoqun et al. Applied Climatology. Beijing: China Meteorological Press, 2021.
|
[34] |
段旭, 陶云, 段长春, 等. 云南省细网格气候区划及气候代表站选取[J]. 大气科学学报, 2011, 34(3): 336-342
Duan Xu, Tao Yun, Duan Changchun et al. A fine mesh climate division and the selection of representative climate stations in Yunan Province. Transactions of Atmospheric Sciences, 2011, 34(3): 336-342.
|
[35] |
陈艳, 段旭, 董文杰, 等. 昆明地区城市热岛效应的再分析[J]. 高原气象, 2012, 31(6): 1753-1760
Chen Yan, Duan Xu, Dong Wenjie et al. Reanalysis on the urban heat island effect in Kunming. Plateau Meteorology, 2012, 31(6): 1753-1760.
|
[36] |
住房城乡建设部. 海绵城市建设技术指南——低影响开发雨水系统构建(试行)[R]. 北京:住房城乡建设部,2014
Ministry of Housing and Urban-Rural Development. Technical guide for sponge city construction——Construction of stormwater system for low impact development (trial). Beijing: Ministry of Housing and Urban-Rural Development, 2014.
|
[37] |
邹嘉福, 刘正伟. 昆明城市暴雨洪水特性分析[J]. 水电能源科学, 2013, 31(1): 42-44
Zou Jiafu, Liu Zhengwei. Analysis of storm flood characteristics of Kunming City. Hydropower Energy Science, 2013, 31(1): 42-44.
|
[38] |
张宇航, 杨默远, 潘兴瑶, 等. 降水场次划分方法对降水控制率的影响分析[J]. 中国给水排水, 2019, 35(13): 122-127.
Zhang Yuhang, Yang Moyuan, Pan Xingyao et al. Influence of rainfall division method on capture ratio of rainfall. China Water & Wastewater, 2019, 35(13): 122-127.
|
[39] |
Luber G, Mcgeehin M. Climate change and extreme heat events[J]. American Journal of Preventive Medicine, 2008, 35(5): 429-435.
|
[40] |
晏红明, 袁媛, 王永光. 气候变暖背景下气候平均值更替对中国气候业务的影响[J]. 气象, 2022, 48(3): 284-298
Yan Hongming, Yuan Yuan, Wang Yongguang. Influence of climatological mean value change operation in China under the global warming. Meteorological Monthly, 2022, 48(3): 284-298.
|
[41] |
盛裴轩, 毛节泰, 李建国, 等. 大气物理学[M]. 北京: 北京大学出版社, 2003
Sheng Peixuan, Mao Jietai, Li Jianguo et al. Atmospheric Physics. Beijing: Peking University Press, 2003.
|
[42] |
Solomon S, Rosenlof K H, Portmann R W et al. Contributions of stratospheric water vapor to decadal changes in the rate of global warming[J]. Science, 2010, 327(5970): 1219-1223.
|
[43] |
包慧濛, 肖安, 李葳, 等. 南方比湿特征及其与暴雨的关系[J]. 气象与环境科学, 2021, 44(2): 33-42
Bao Huimeng, Xiao An, Li Wei et al. Characteristics of specific humidity in south China and its relationship with rainstorm. Meteorological and Environmental Sciences, 2021, 44(2): 33-42.
|
[44] |
Trenberth K E. Changes in precipitation with climate change[J]. Climate Research, 2010, 47(47): 123-138.
|
[45] |
Dou J, Wang Y. Observed spatial characteristics of Beijing urban climate impacts on summer thunderstorms[J]. Journal of Applied Meteorology and Climatology, 2015, 54(1): 94-105.
|
[46] |
晏红明, 肖子牛, 薛建军. 初夏西北太平洋副高东西变动对中国南部降水东西差异的影响[J]. 地球物理学报, 2021, 64(3): 765-781
Yan Hongming, Xiao Ziniu, Xue Jianjun. The influence of east-west displacement of Northwestern Pacific subtropical high on east-weat difference of precipitation in southern China in early summer. Chinese Journal of Geophysics, 2021, 64(3): 765-781.
|
[47] |
Wang J, Feng J, Yan Z et al. Nested high-resolution modeling of the impact of urbanization on regional climate in three vast urban agglomerations in China[J]. Journal of Geophysical Research, 2012, 117: D21103
|
[48] |
Han Zuoqiang, Yan Zhongwei, Li Zhen et al. Impact of urbanization on low-temperature precipitation in Beijing during 1960—2008 [J]. Advances in Atmospheric Sciences, 2014, 31(1), 48-56.
|
[49] |
Zhang Y, Smith J A, Luo L et al. Urbanization and rainfall variability in the Beijing metropolitan region[J]. Hydrometeorol, 2014, 15: 2219-2235.
|
[50] |
Song X, Zhang J, AghaKouchak A. Rapid urbanization and changes in spatiotemporal characteristics of precipitation in Beijing metropolitan area[J]. Journal of Geophysical Research, 2014, 119(11): 11250-11271.
|
/
〈 |
|
〉 |