基于同位素氘盈余法量化金华地区水汽再循环比例
马延伟(1996—),男,山东滨州人,硕士研究生,主要研究方向为降水稳定同位素。E-mail: 17853462145@163.com |
收稿日期: 2023-10-22
修回日期: 2024-02-11
网络出版日期: 2025-03-04
基金资助
国家自然科学基金项目(42101044)
国家自然科学基金项目(42077188)
冰冻圈科学与冻土工程全国重点实验室开放课题(CSFSE-KF-2403)
浙江省自然科学基金(LQ23D010003)
金华市科技计划项目(2023-4-013)
版权
Quantifying the proportion of recycled moisture in Jinhua Area based on isotope d-excess method
Received date: 2023-10-22
Revised date: 2024-02-11
Online published: 2025-03-04
Supported by
National Natural Science Foundation of China(42101044)
National Natural Science Foundation of China(42077188)
Program of the State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, CAS(CSFSE-KF-2403)
Natural Science Foundation of Zhejiang Province(LQ23D010003)
Jinhua Science and Technology Bureau(2023-4-013)
Copyright
本研究基于2022年3月―2023年2月的金华地区次降水样品,结合气象数据与GLEAM数据集,采用三端元氘盈余方法量化了区域不同时期云下蒸发强度与再循环水汽比例,并探讨了其差异的影响因素。结果表明,研究区局地大气降水线为δD = 8.47δ18O + 16.45,截距和斜率均高于全球大气水线。降水氘盈余(d-excess)在-3.76‰ ~ 31.02‰波动,季节差异明显。其中,春雨期和梅雨期(3―6月)、伏旱期(7―8月)和少雨期(9月―次年2月)的d-excess平均值分别为11.06‰、7.32‰、18.76‰。三端元氘盈余结果显示:伏旱期云下蒸发强度最大,少雨期次之,春雨期和梅雨期云下蒸发强度最小。再循环水汽比例呈现出一致变化,伏旱期最高为21.25%,少雨期为14.02%,春雨期和梅雨期最低为6.25%。在春雨期和梅雨期,相对湿度是影响云下蒸发强度和水汽再循环比例的主要控制因素。
马延伟 , 蒋凤 , 蒲焘 , 孔彦龙 , 史晓宜 . 基于同位素氘盈余法量化金华地区水汽再循环比例[J]. 地理科学, 2025 , 45(2) : 425 -437 . DOI: 10.13249/j.cnki.sgs.20231091
Based on precipitation samples from Jinhua region (March 2022 to February 2023), this study combines meteorological data and the GLEAM dataset, to quantify the intensity of sub-cloud evaporation, the proportion of recycled moisture using the three-end d-excess method during different periods. The local meteoric water line in the study area is δD = 8.47δ18O + 16.45, with both intercept and slope exceeding those of the global meteoric water line. The precipitation deuterium excess (d-excess) fluctuates between -3.76‰ and 31.02‰, showing significant seasonal differences. Specifically, the average d-excess values during the spring rainy period and plum rain period (March to June), the summer drought period (July to August), and the brief rain period (September to February of the following year) are 11.06‰, 7.32‰, and 18.76‰, respectively. The results indicate that the sub-cloud evaporation intensity is highest during the summer drought period, followed by the brief rain period, with the lowest intensity during the spring and plum rain periods. The proportion of recycled moisture shows a similar pattern, being 21.25% during the summer drought period, 14.02% during the brief rain period, and 6.25% during the spring and plum rain periods. Relative humidity is the primary factor influencing both sub-cloud evaporation intensity and recycled water vapor proportion during the spring and plum rain periods.
表2 不同时期降水δ18O与温度、降水量、相对湿度的相关关系Table 2 Correlation of precipitation δ18O with temperature, precipitation, and relative humidity at different periods, respectively |
时期 | δ18O与温度 | δ18O与降水量 | δ18O与相对湿度 |
注:**表示通过0.01的显著性检验;*表示通过0.05的显著性检验。 | |||
春雨期和梅雨期 | -0.15 | -0.39** | -0.45** |
伏旱期和少雨期 | -0.10 | -0.37* | -0.11 |
全年 | -0.13 | -0.37** | -0.29** |
图5 云下蒸发强度与温度(a)、相对湿度(b)、降水量(c)的相关性Fig. 5 Correlation of sub-cloud evaporation intensity with temperature (a), relative humidity (b), and precipitation (c) |
表3 不同时期云下蒸发强度与气象因素相关性Table 3 Correlation between sub-cloud evaporation intensity and meteorological factors in different periods |
气象因素 | 春雨期和梅雨期 | 伏旱期 | 少雨期 |
注:**表示通过0.01的显著性检验;*表示通过0.05的显著性检验。 | |||
温度 | -0.45** | -0.48 | -0.49** |
相对湿度 | 0.78** | 0.41 | 0.87** |
降水量 | 0.36* | 0.61 | 0.39* |
图8 再循环水汽比例与温度(a)、相对湿度(b)、降水量(c)的相关性Fig. 8 Correlation between recycled moisture ratio and temperature (a), relative humidity (b) and precipitation (c) |
表4 不同月份金华再循环水汽比例与气象因素相关性Table 4 Correlation between recycled moisture ratio and meteorological factors in different months in Jinhua |
气象因素 | 春雨期和梅雨期 | 伏旱期 | 少雨期 |
注:**表示通过0.01的显著性检验;*表示通过0.05的显著性检验。 | |||
温度 | 0.45** | -0.19 | 0.25 |
相对湿度 | -0.70** | 0.36 | -0.33 |
降水量 | -0.30* | -0.41 | -0.34 |
图9 云下蒸发强度(a)和再循环水汽比例(c)随降水历时的变化特征及降水历时对云下蒸发强度(b)和再循环水汽比例(d)的影响Fig. 9 The variation characteristics of sub-cloud evaporation intensity (a) and recycled moisture ratio (c) with precipitation duration and the influence of precipitation duration on sub-cloud evaporation intensity (b) and recycled moisture ratio (d) |
表5 同位素方法量化局地再循环水汽估计值比较Table 5 Comparison of estimated local Recycled moisture quantities using isotopic methods |
区域 | 研究区 | 研究年份 | 水汽再循环比例 | 数据来源 |
注:―表示文中未明确时间。 | ||||
东部地区 | 台湾岛 | 1993―2008 | 小于5%(夏季) | [43] |
台湾岛 | 1993―2008 | 31%~37% | [32] | |
华中地区 | 1961―2017 | 6%~19%(夏季) | [45] | |
南京 | 2012―2018 | 6.4%(夏季)14.7%(春季) 15.4%(秋冬季) | [22] | |
太湖 | 2015― | 7%(夏季)37.5%~48.1%(冬季) | [13] | |
长江流域 | ― | 2.0%(夏季)3.7%(冬季) | [21] | |
华北地区 | 1961―2017 | 9%(夏季) | [45] | |
黄河流域 | ― | 5.5%(夏季)4.7%(冬季) | [21] | |
东北地区 | 1961―2017 | 4%~22%(夏季) | [45] | |
西北地区 | 伊宁到石河子 | 2012―2013 | 3.4% | [33] |
蔡家湖 | 2012―2013 | 4.9% | [33] | |
乌鲁木齐 | 2012―2013 | 16.2% | [33] | |
乌鲁木齐 | 1968―2003 | 15% | [9] | |
天山 | 2003―2004 | 小于2% | [9] | |
石羊河流域 | 2017 | 17%(山区)28%(绿洲)15%(沙漠) | [46] | |
祁连山 | 2016 | 22% | [47] | |
青藏地区 | 崇测 | 1979―2012 | 15.0%~82.6% | [11] |
藏色岗日 | 1979―2008 | 24.7%~81.6% | [11] | |
西合休 | 2012―2014 | 21.3% | [48] | |
沙曼 | 2012―2013 | 11.3% | [48] | |
江卡 | 2011―2014 | 13% | [48] | |
青海湖 | 2009―2010 | 23.4% | [10] | |
那曲 | 2004 | 30%~80%(8月) | [49] |
[1] |
顾慰祖. 同位素水文学[M]. 北京: 科学出版社, 2011.
Gu Weizu. Isotope hydrology. Beijing: Science Press, 2011.
|
[2] |
Ampuero A, Stríkis N M, Apaéstegui J et al. The forest effects on the isotopic composition of rainfall in the northwestern Amazon Basin[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(4): e2019JD031445.
|
[3] |
Brubaker K L, Entekhabi D, Eagleson P S. Estimation of continental precipitation recycling[J]. Journal of Climate, 1993, 6(6): 1077-1089.
|
[4] |
Gat J R, Carmi I. Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area[J]. Journal of Geophysical Research, 1970, 75(15): 3039-3048.
|
[5] |
Gimeno L, Stohl A, Trigo R M et al. Oceanic and terrestrial sources of continental precipitation[J]. Reviews of Geophysics, 2012, 50(4): 1-41.
|
[6] |
Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468.
|
[7] |
Zhang F, Huang T M, Man W M et al. Contribution of recycled moisture to precipitation: A modified d-excess-based model[J]. Geophysical Research Letters, 2021, 48: e2021GL095909.
|
[8] |
Froehlich K, Kralik M, Papesch W et al. Deuterium excess in precipitation of Alpine regions-moisture recycling[J]. Isotopes in Environmental and Health Studies, 2008, 44(1): 61-70.
|
[9] |
Kong Y L, Pang Z H, Froehlich K. Quantifying recycled moisture fraction in precipitation of an arid region using deuterium excess[J]. Tellus B: Chemical and Physical Meteorology, 2013, 65(1): 19251.
|
[10] |
Cui B L, Li X Y. Stable isotopes reveal sources of precipitation in the Qinghai Lake Basin of the northeastern Tibetan Plateau [J]. The Science of the Total Environment, 2015, 527–528: 26–37.
|
[11] |
An W L, Hou S G, Zhang Q et al. Enhanced recent local moisture recycling on the northwestern Tibetan Plateau deduced from ice core deuterium excess records[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(23): 12541-12556.
|
[12] |
Jiao Y M, Liu C J, Liu Z L et al. Impacts of moisture sources on the temporal and spatial heterogeneity of monsoon precipitation isotopic altitude effects[J]. Journal of Hydrology, 2020, 583: 124576.
|
[13] |
胡勇博. 基于稳定同位素法量化太湖水汽再循环比例[D]. 南京: 南京信息工程大学, 2022.
Hu Yongbo. Quantifying the moisture recycling fractions from Lake Taihu with an isotope-based method. Nanjing: Nanjing University of Information Science & Technology, 2022.
|
[14] |
董小芳, 杨华玮, 张峦, 等. ENSO事件对上海降水中氢氧同位素变化的影响[J]. 环境科学, 2017, 38(12): 4991-5003.
Dong Xiaofang, Yang Huawei, Zhang Luan et al. Influence of ENSO events on the Hydrogen (δ2H) and Oxygen (δ18O) isotopic values of precipitation in Shanghai. Environmental Science, 2017, 38(12): 4991-5003.
|
[15] |
隋明浈, 高德强, 徐庆, 等. 江苏高邮大气降水氢氧同位素特征及水汽来源[J]. 应用生态学报, 2019, 30(6): 1823-1832.
Sui Mingzhen, Gao Deqiang, Xu Qing et al. Characteristics of hydrogen and oxygen isotopes in precipitation and moisture sources in Gaoyou, Jiangsu Province, China. Chinese Journal of Applied Ecology, 2019, 30(6): 1823-1832.
|
[16] |
雷明, 柳永胜, 马勤威, 等. 基于同位素技术的金衢盆地水循环研究[J]. 人民黄河, 2020, 42(8): 88-92+99.
Lei Ming, Liu Yongsheng, Ma Qinwei et al. Water cycle analysis of the Jinqu Basin based on isotope techniques. Yellow River, 2020, 42(8): 88-92+99.
|
[17] |
Shi Y S, Jin Z F, Wu A J et al. Stable isotopic characteristics of precipitation related to the environmental controlling factors in Ningbo, east China[J]. Environmental Science and Pollution Research, 2021, 28(9): 10696-10706.
|
[18] |
Gou J F, Qu S M, Guan H D et al. Relationship between precipitation isotopic compositions and synoptic atmospheric circulation patterns in the lower reach of the Yangtze River[J]. Journal of Hydrology, 2022, 605: 127289.
|
[19] |
Zhan Z J, Pang H X, Wu S Y et al. Determining key upstream convection and rainout zones affecting δ18O in water vapor and precipitation based on 10-year continuous observations in the East Asian Monsoon region[J]. Earth and Planetary Science Letters, 2023, 601: 117912.
|
[20] |
马潜, 张明军, 王圣杰, 等. 基于氢氧同位素的中国东南部降水局地蒸发水汽贡献率[J]. 地理科学进展, 2013, 32(11): 1712-1720.
Ma Qian, Zhang Mingjun, Wang Shengjie et al. Contributions of moisture from local evaporation to precipitations in southeast China based on hydrogen and oxygen isotopes. Progress in Geography, 2013, 32(11): 1712-1720.
|
[21] |
Ma Q, Zhang M J, Wang L W et al. Quantification of moisture recycling in the river basins of China and its controlling factors[J]. Environmental Earth Sciences, 2019, 78(14): 392.
|
[22] |
李亚举. 南京近地面大气水汽和降水稳定同位素观测研究[D]. 南京: 南京大学, 2020.
Li Yaju. Observation of stable isotopes of water vapor and precipitation near the ground in Nanjing. Nanjing: Nanjing University, 2020.
|
[23] |
吴樟荣, 贾春瑶. 金华江水文特征[J]. 浙江师大学报(自然科学版), 1994(2): 78-83.
Wu Zhangrong, Jia Chunyao. The hydrological features of Jinhua River. Journal of Zhejiang Normal University (Natural Sciences), 1994(2): 78-83.
|
[24] |
Martens B, Miralles D G, Lievens H et al. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture[J]. Geoscientific Model Development, 2017, 10(5): 1903-1925.
|
[25] |
Miralles D G, Holmes T R H, de Jeu R A M et al. Global land-surface evaporation estimated from satellite-based observations[J]. Hydrology and Earth System Sciences, 2011, 15: 453-469.
|
[26] |
Yang X Q, Yong B, Ren L L et al. Multi-scale validation of GLEAM evapotranspiration products over China via ChinaFLUX ET measurements[J]. International Journal of Remote Sensing, 2017, 38(20): 5688-5709.
|
[27] |
黄一民, 章新平, 孙葭, 等. 长沙大气水汽、降水中稳定同位素季节变化及与水汽输送关系[J]. 地理科学, 2015, 35(4): 498-506.
Huang Yimin, Zhang Xinping, Sun Jia et al. Seasonal variations of stable isotope in precipitation and atmospheric water vapor and their relationship with moisture transportation in Changsha City. Scientia Geographica Sinica, 2015, 35(4): 498-506.
|
[28] |
Tao S Y, Zhang X, Pan G Y et al. Moisture source identification based on the seasonal isotope variation of precipitation in the Poyang Lake Wetland, China[J]. Journal of Hydrology: Regional Studies, 2021, 37: 100892.
|
[29] |
陈锦芳, 曹建平, 黄奕普. 厦门沿岸地区大气降水中氢、氧稳定同位素组成及其影响因素[J]. 海洋学研究, 2010, 28(1): 11-17.
Chen Jinfang, Cao Jianping, Huang Yipu. The hydrogen and oxygen isotope composition of precipitation in the Xiamen coastal area. Journal of Marine Sciences, 2010, 28(1): 11-17.
|
[30] |
Jin Z F, Wang Y, Li F L et al. Stable isotopes and chemical characteristics of precipitation in Hangzhou and Huzhou, East China[J]. Environmental Science and Pollution Research, 2019, 26(23): 23717-23729.
|
[31] |
Craig H, Gordon L I. Deuterium and Oxygen 18 variations in the ocean and the marine atmosphere[M]. Pisa: Laboratorio di Geologia Nucleare, 1965.
|
[32] |
Peng T R, Liu K K, Wang C H et al. A water isotope approach to assessing moisture recycling in the island-based precipitation of Taiwan: A case study in the western Pacific[J]. Water Resources Research, 2011, 47(8): 2168-2174.
|
[33] |
Wang S J, Zhang M J, Che Y J et al. Contribution of recycled moisture to precipitation in oases of arid central Asia: A stable isotope approach[J]. Water Resources Research, 2016, 52(4): 3246-3257.
|
[34] |
Wang S J, Jiao R, Zhang M J et al. Changes in below-cloud evaporation affect precipitation isotopes during five decades of warming across China[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(7): 17
|
[35] |
Kendall C, Caldwell E A. Fundamentals of isotope geochemistry. Isotope tracers in catchment hydrology[M]. Amsterdam: Elsevier, 1998.
|
[36] |
陈烨兴, 魏珂. 凝心聚力 务实笃行 做好台风“梅花”各项防御工作[J]. 中国防汛抗旱, 2022, 32(10): 85-86.
Chen Yexing, Wei Ke. Unite our hearts and efforts, work in a down-to-earth and committed manner, and do a good job in all aspects of the defense work against Typhoon “Muifa”. China Flood & Drought Management, 2022, 32(10): 85-86.
|
[37] |
吴华武, 欧阳勇峰, 姜鹏举, 等. 水汽来源和环境因子对典型亚热带季风区降水稳定同位素的影响——以湖口地区为例[J]. 地理科学, 2022, 42(8): 1502-1512.
Wu Huawu, Ouyang Yongfeng, Jiang Pengju et al. Effects of moisture sources and environmental factors on precipitation stable isotopes in a typical subtropical monsoon region: A case of Hukou region. Scientia Geographica Sinica, 2022, 42(8): 1502-1512.
|
[38] |
Wu H W, Fu C S, Zhang C C et al. Temporal variations of stable isotopes in precipitation from Yungui Plateau: Insights from moisture source and rainout effect[J]. Journal of Hydrometeorology, 2022, 23(1): 39-51.
|
[39] |
章新平, 刘晶淼, 孙维贞, 等. 中国西南地区降水中氧稳定同位素比率与相关气象要素之间关系的研究[J]. 中国科学. D辑: 地球科学, 2006, 36(9): 850-859.
Zhang Xinping, Liu Jingmiao, Sun Weizhen et al. Research on the relationship between the Oxygen stable isotope ratio in precipitation and related meteorological elements in southwest China. Science in China Series D: Earth Sciences, 2006, 36(9): 850-859.
|
[40] |
Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702-1703.
|
[41] |
Clark I D, Frjtz P. Environmental isotopes in hydrogeology [M]. New York: Lewis Publishers, 1997: 328.
|
[42] |
Peng H D, Mayer B, Harris S et al. The influence of below-cloud secondary effects on the stable isotope composition of hydrogen and oxygen in precipitation at Calgary, Alberta, Canada[J]. Tellus B: Chemical and Physical Meteorology, 2007, 59(4): 698-704.
|
[43] |
Peng T R, Wang C H, Huang C C et al. Stable isotopic characteristic of Taiwan’s precipitation: A case study of western Pacific monsoon region[J]. Earth and Planetary Science Letters, 2010, 289(3): 357-366.
|
[44] |
Zhao L, Liu X, Wang N et al. Contribution of recycled moisture to local precipitation in the inland Heihe River Basin[J]. Agricultural and Forest Meteorology, 2019, 271: 316-335.
|
[45] |
Peng P Y, Zhang X J, Chen J. Modeling the contributions of oceanic moisture to summer precipitation in eastern China using 18O[J]. Journal of Hydrology, 2020, 581: 124304.
|
[46] |
Zhu G F, Guo H W, Qin D H et al. Contribution of recycled moisture to precipitation in the monsoon marginal zone: Estimate based on stable isotope data[J]. Journal of Hydrology, 2019, 569: 423-435.
|
[47] |
Gui J, Li Z X, Feng Q et al. Water resources significance of moisture recycling in the transition zone between Tibetan Plateau and arid region by stable isotope tracing[J]. Journal of Hydrology, 2022, 605: 127350.
|
[48] |
Sun C J, Chen Y N, Li J et al. Stable isotope variations in precipitation in the northwesternmost Tibetan Plateau related to various meteorological controlling factors[J]. Atmospheric Research, 2019, 227: 66-78.
|
[49] |
Kurita N, Yamada H. The role of local moisture recycling evaluated using stable isotope data from over the middle of the Tibetan Plateau during the monsoon season[J]. Journal of Hydrometeorology, 2008, 9(4): 760-775.
|
[50] |
李修仓, 姜彤, 吴萍. 水分再循环计算模型的研究进展及其展望[J]. 地球科学进展, 2020, 35(10): 1029-1040.
Li Xiucang, Jiang Tong, Wu Ping. Progress and prospect of the moisture recycling models. Advances in Earth Science, 2020, 35(10): 1029-1040.
|
/
〈 |
|
〉 |