Scientia Geographica Sinica  2014 , 34 (1): 116-121 https://doi.org/10.13249/j.cnki.sgs.2014.01.116

Orginal Article

地表岩石侵蚀速率对宇生核素暴露测年影响的研究

张志刚1, 王建12, 白世彪12, 徐孝彬3, 常直杨1

1. 南京师范大学地理科学学院, 江苏 南京 210023
2. 南京师范大学虚拟地理环境教育部重点实验室, 江苏 南京 210023
3. 江苏教育学院, 江苏 南京 210024

Impact of Surface Rock Erosion Rate on In-situ Cosmogenic Exposure Dating Method

ZHANG Zhi-gang1, WANG Jian12, BAI Shi-biao12, XU Xiao-bin3, CHANG Zhi-yang1

1. School of Geographical Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
2. Key Laboratory of Virtual Geographical Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China
3. Jiangsu College of Education, Nanjing, Jiangsu 210024, China

中图分类号:  P931.4

文献标识码:  A

文章编号:  1000-0690(2014)01-0116-06

通讯作者:  王建,教授。E-mail:jwang169@vip.sina.com

收稿日期: 2013-03-5

修回日期:  2013-04-20

网络出版日期:  2014-01-10

版权声明:  2014 《地理科学》编辑部 本文是开放获取期刊文献,在以下情况下可以自由使用:学术研究、学术交流、科研教学等,但不允许用于商业目的.

基金资助:  南京师范大学全国优秀博士论文培育项目(2012BS0005)、国家自然科学基金项目(40572097)、江苏省高校优势学科建设工程项目(PAPD)资助

作者简介:

作者简介:张志刚(1984-),男,山西忻州人,博士,主要从事第四纪冰川和地貌演化研究。E-mail:zhangzhigang840620@126.com

展开

摘要

利用原地生宇生核素测定暴露年代时,通常会假设地貌体侵蚀速率为0。研究表明,该假设会低估地貌体的真实暴露年代。搜集2009~2012年全球不同区域56个岩石样品的宇生核素10Be测年数据,探讨侵蚀速率为0对于侵蚀速率为0.5、1以及2 mm/ka的样品,在不同暴露尺度上对暴露年代计算的影响幅度。结果表明,对于1×104a尺度的样品暴露年代可能低估约0.5%,1%,2%;对于10×104a尺度的样品可能低估约5%,7%,20%;对于50×104a尺度的样品可能低估约40%,70%甚至100%以上。

关键词: 宇生核素 ; 10Be ; 暴露年代 ; 侵蚀速率

Abstract

The cosmogenic exposure dating method that measures trace cosmogenic nuclide concentrations present in terrestrial surface rocks developed in the late 1980s. This method has become a widely used tool to address scientific questions in the fields of geomorphology, glaciology, palaeoclimatology, palaeoseismology, soil science, volcanology and geohazard research. Until now, three types of uncertainty affect the precision and accuracy of cosmogenic isotope dates; these include: analytical uncertainties including systematic errors, production rate uncertainties and sampling uncertainties. The cosmogenic nuclide concentration on the surface of rocks is a function of exposure time and erosion rate. However, it is usually hypothesized that the sample erosion rate is zero when dating the age using cosmogenic exposure dating method due to poorly constrained rock surface erosion rates. Recent research suggests that the assumption of “zero erosion” may underestimate true exposure age and the effect will increase with increasing sample age. In order to explore the impact of different erosion rates to the different exposure ages sample, we gathered 56 rock cosmogenic 10Be datum from different areas in the literature of 2009-2012. We analyzed the effects of zero erosion between 0.5, 1 and 2 mm/ka for the 1×104 a, 10×104 a and 50×104 a scale samples respectively. The erosion rates datum stem from mircro-weathering measurements and maximum erosion rates of the oldest sample using the cosmogenic exposure dating method in different areas. The results suggest, that the age for 1×104 a is underestimated approximately by 0.5%, 1% and 2% for erosion rates of 0.5, 1 and 2 mm/ka, respectively. For the age of 10×104 a, the underestimate is approximately should be 5%, 7% and 20%, and for 50×104 a approximately 40%, 70% and even more than 100%, respectively. The results are consistent with previous research results which suggest that our results are reliable. At the same time the result means that the erosion rates of surface rock significantly affect the accuracy of cosmogenic exposure dating method, and in particular for the older exposure age samples. Thus, future studies should pay attention to this issue.

Keywords: cosmogenic isotope ; beryllium-10 ; exposure dating ; erosion rate

0

PDF (388KB) 元数据 多维度评价 相关文章 收藏文章

本文引用格式 导出 EndNote Ris Bibtex

张志刚, 王建, 白世彪, 徐孝彬, 常直杨. 地表岩石侵蚀速率对宇生核素暴露测年影响的研究[J]. , 2014, 34(1): 116-121 https://doi.org/10.13249/j.cnki.sgs.2014.01.116

ZHANG Zhi-gang, WANG Jian, BAI Shi-biao, XU Xiao-bin, CHANG Zhi-yang. Impact of Surface Rock Erosion Rate on In-situ Cosmogenic Exposure Dating Method[J]. Scientia Geographica Sinica, 2014, 34(1): 116-121 https://doi.org/10.13249/j.cnki.sgs.2014.01.116

20世纪80年代地貌学的一大突破就是宇生核素测年手段在地学领域的应用,该技术可以定量描述地表的暴露历史和侵蚀速率,分析和重建地貌演变过程[1]。目前,如何提高测年精度是该方法未来发展的主要目标[2]。相关研究表明宇生核素暴露测年的误差主要有系统误差、生成速率的误差和样品误差[2-6]。系统误差可以通过重新测定核素(10Be)半衰期来降低[7,8];生成速率所造成的误差可以通过建立不同的生成速率计算模型[2],或者利用局地高纬海平面宇生核素(10Be)产生速率代替全球高纬海平面的产生速率来降低[9]。对于样品误差,尽管在暴露年代的准确测定中扮演着重要的角色,却难以定量化研究[4]。地貌体暴露后受到侵蚀影响使得岩石表面核素浓度降低导致样品暴露年代被低估,且样品越老所受影响越大[10]。已有学者在宇生核素暴露年代计算时考虑了侵蚀速率的影响[11,12],也有学者认为长时间尺度岩石侵蚀速率难以估计[13-15],多数文献中仍假设侵蚀速率为0。目前,关于侵蚀速率对暴露年代影响的研究相对较少,本文基于“差异化侵蚀(笔者称呼)”方法所估算的岩石侵蚀速率以及宇生核素暴露测年法所估算的岩石侵蚀速率,探讨不同侵蚀速率对不同暴露尺度样品暴露年代的影响幅度,以期为提高宇生核素暴露测年的准确性提供依据。

1 数据来源

本文数据来源于2009~2012年全球不同区域(图 1)宇生核素10Be暴露测年数据以及课题组实验数据。数据主要分布在亚洲[5,12,14,16-18]、欧洲[6,19-22]、北美[15,23,24]、南美[13,25]以及南极洲地区[26-29]表1)。

图1   宇生核素10Be测年点分布

Fig. 1   Distribution of cosmogenic nuclide 10Be dating spots

表1   宇生核素10Be数据来源

Table 1   Sources of cosmogenic nuclide 10Be data

研究区原始数据编号来源研究区原始数据编号来源研究区原始数据编号来源
青藏高原东南S16最新
数据
土耳其
西北
TRU-10[19]巴塔哥尼亚BC07-8[13]
S19TRU-24BC07-4
西藏东南Na42[5]*阿尔卑斯山脉西南Clap 03[20]BC06-98
Na21Clap 07BC06-103
Na84瑞典
西南
SVE0814[21]南极洲RDY-005[26]
青藏高原东南k14[12]SVE0815RDY-026
k15德国东北BER-97-07[22]南极洲SO2[27]
珠穆朗玛峰Ron-46[14]BER-97-04Da12
Ron-50北美KF-0218-2[15]Da19
青藏高原西部MUST-48[16]MANLY-1Sch/Mo28
MUST-80MANLY-6PK62
MUST-P1格陵兰岛
西南
NAG04[23]PK68
KONG-29NAG07南极洲LAC-04[28]
尼泊尔BH11[17]NAG17TER-05
青藏高原东北TB-07-23[18]科迪勒拉
山脉
YK46[24]南极洲西部CF-01-08[29]
TB-06-47YK38CF-08-08
TB-06-32YK10CF-28-08
西伯利亚西南SO7BE6[6]巴塔哥尼亚BC07-18[25]MAR-04-MJB
SO7BE11BC07-22

注:*[5]代表来源于参考文献[5],其余同此。

新窗口打开

2 地表岩石侵蚀速率选取及对暴露年代的校正

目前地貌侵蚀研究相对较多的是土壤侵蚀,有的学者通过GIS技术和模拟数据建立土壤侵蚀量估算系统[30],有的则基于DEM和遥感影像分析土壤侵蚀的时空演变[31],有的则利用树木生理生态进行土壤侵蚀研究[32]。也有学者通过地势起伏度比较区域不同部位的相对侵蚀程度[33]。而准确测定万年尺度地表岩石的侵蚀速率难度较大,存在许多不确定因素[14]。目前,对于长尺度地表岩石侵蚀速率常用两种方法估算:一是微风化(micro-weathering)或者称为差异侵蚀法,该方法最先由Dahl[34]在1967年提出,主要是基于冰川作用后岩石表面由于抗风化侵蚀程度不同而形成侵蚀高差,再通过该岩石所代表的地貌年代来估算侵蚀速率。随后许多学者利用该方法来估算侵蚀速率,Andre[35]测定了斯堪的纳维亚北部地区约3 200个岩石样品,研究得出花岗岩和变质岩的侵蚀速率大约为0.2~1.2 mm/ka,这与Dahl[34]的研究Narvik Mountains基岩的侵蚀速率(1 mm/ka)相一致;Wang等[36]通过研究稻城古冰帽冰蚀基岩面的暴露年代及差异侵蚀量,估算出花岗岩的侵蚀速率为0.69 mm/ka;Ballantyne[4]、Zahno等[19]、Lasen等[21]利用该方法估算出富含石英岩石的侵蚀速率分别为2、1.8、1 mm/ka。另一种方法是“宇生核素(主要是10Be和26Al)最大侵蚀速率法”,该方法由Lal[37]于1991年提出,目前利用该方法估算地表基岩侵蚀速率已在南极[38]、澳大利亚[39]、南美洲[11]、美国[40]、欧洲[41]、青藏高原[42]等地区进行研究。由于该方法应用的假设条件是样品要达到“侵蚀平衡状态”,多数学者认为暴露年代较老的样品达到侵蚀平衡的可能性较大,因此,通常采用最老年代样品来估算侵蚀速率。Smith等[11]利用两个最老样品(873 ka和1.15 Ma)估算漂砾的侵蚀速率为0.3~0.5 mm/ka;Seong等[16]利用最老样品估算的漂砾侵蚀速率约为1 mm/ka;Owen 等[5]利用相同的方法估算岩石的侵蚀速率约为1.2 mm/ka。

因此,本文以“差异侵蚀法”所获得的侵蚀速率以及利用“宇生核素暴露测年法”所估算的最老样品的侵蚀速率为依据,选取地表岩石侵蚀速率为0.5、1以及2 mm/ka并以此探讨对不同暴露尺度样品暴露年代计算结果的影响。计算过程主要是利用Balco等[43]的网络模型CRONUS-Earth(http://hess.ess.washington.edu)统一重新计算出样品的宇生核素生成速率(采用Lal[37]和Stone[44]恒定生成速率模型计算),然后根据Lal[37]中的相关公式计算最小暴露年代并进行侵蚀速率年代校正及影响幅度分析。

3 结果与讨论

不同侵蚀速率对不同暴露尺度样品暴露年代计算的影响如图2所示,样品侵蚀速率为0对于侵蚀速率为0.5 mm/ka,在1×104a尺度上可能低估约0.5%,在10×104a尺度上可能低估约5%,在50×104a尺度上可能低估约40%;对于侵蚀速率为1 mm/ka,在1×104a尺度上可能低估约为1%,在10×104a尺度上可能低估约为7%,在50×104a尺度上可能低估70%;对于侵蚀速率为2 mm/ka,在1×104a尺度上可能低估约2%,在10×104a尺度上可能低估20%,在20×104a尺度上可能低估60%,在50×104a尺度上,校正结果趋于饱和无法计算。

图 2   不同侵蚀速率对不同暴露时间样品的影响

Fig.2   Impact of different erosion rates on different exposure age samples

已有学者就侵蚀速率对不同暴露尺度样品的影响幅度进行研究。Smith等[11]研究表明,侵蚀速率为0相对于侵蚀速率为0.5 mm/ka时,对于200 ka的样品低估约为9%(本文计算结果为10%),对于400 ka的样品低估约为20%(本文计算结果为19%),对于600 ka的样品低估可能为34%(本文利用540 ka的样品计算,其低估约为39%)。Owen等[14]研究表明侵蚀速率为0相对于侵蚀速率为2.5 mm/ka时对于10、20、40、100 ka样品的低估值分别约为:2%,5%,10%,25%(本文以2 mm/ka计算的结果为:2%,3%,7%,19%)。Seong等[16]探讨了侵蚀速率为0相对于侵蚀速率为1 mm/ka时的情况,对于10、50、100、200、300 ka的样品,其低估值约为:1%,4%,10%,22%,42%,本文的以侵蚀速率为1 mm/ka对同样暴露年代样品的研究结果为:1%,3%,7%,16%,30%。Roberts等[23]对暴露年代为10.31、20.39、101.4 ka(侵蚀速率为0)的样品利用侵蚀速率为1 mm/ka校正后对应结果为10.40、20.74、111.4 ka,低估值分别约为:0.87%,1.7%,10.2%,本文的研究结果为:0.63%,1.30%,7.42%。Owen等[5]对比了侵蚀速率为0和侵蚀速率为1.2 mm/ka样品的暴露年代,结果表明10、20、40、100、200、400 ka样品对应的低估值分别为:1%,2%,4%,10%,21%,58%。本文的研究结果与以上学者的研究结果相一致,表明本研究结果的可靠性,同时也显示了侵蚀速率对宇生核素暴露测年影响之大。

4 结 论

通过对全球不同区域宇生核素暴露测年数据在侵蚀速率为0和侵蚀速率不为0的情况下样品暴露年代结果的分析可知:

地表岩石侵蚀速率对利用宇生核素暴露测年计算时影响较大,且样品年代越老受到的影响就越大。侵蚀速率为0的假设,对于侵蚀速率分别为0.5、1、2 mm/ka的样品而言,暴露年代在1×104a尺度上可能低估约0.5%,1%,2%;在10×104a尺度上可能低估约5%,7%,20%;在50×104a尺度上可能低估约40%,70%甚至100%以上。因此在利用该测年手段时对于较老的样品一定要考虑侵蚀速率的影响。

致 谢:感谢审稿专家提出宝贵的修改意见,感谢Thiebes B博士对英文摘要的润色。

The authors have declared that no competing interests exist.


参考文献

[1] 徐孝彬,王建, Yiou F,.

地貌学与第四纪研究的新手段——陆地宇生核素研究

[J].地理科学,2002,22(5):587~591.

[本文引用: 1]     

[2] Balco G.

Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology,1990-2010

[J].Quaternary Science Reviews,2011,30(1-2):3-27

[本文引用: 3]     

[3] Gosse J C,Phillips F M.

Terrestrial in situ cosmogenic nuclides: theory and application

[J].Quaternary Science Reviews,2001,20:1475-1560.

[4] Ballantyne C K.

Extent and deglacial chronology of the last British-Irish Ice Sheet:implications of exposure dating using cosmogenic isotopes

[J].Journal of Quaternary Science,2010,25(4):515-534.

[本文引用: 2]     

[5] Owen L A,Yi C L,Finkel R C,et al.

Quaternary glaciation of Gurla Mandhata (Naimon’anyi)

[J].Quaternary Science Reviews,2010, 29:1817-1830.

[本文引用: 3]     

[6] Arzhannikov S G,Braucher R,Jolivet M,et al.

History of late Pleistocene glaciations in the central Sayan-Tuva Upland (southern Siberia)

[J].Quaternary Science Reviews,2012,49:16-32.

[本文引用: 2]     

[7] Chmeleff J,von Blanckenburg F,Kossert K,et al.

Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting

[J].Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms,2010,268(2):192-199.

[本文引用: 1]     

[8] Korschinek G,Bergmaier A,Faestermann T,et al.

A new value for the half-life of 10Be by heavyion elastic recoil detection and liquid scintillation counting

[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2010,268(2):187-191.

[本文引用: 1]     

[9] Balco G,Briner J,Finkel R C,et al.

Regional beryllium-10 production rate calibration for late-glacial northeastern North America

[J].Quaternary Geochronology,2009,4:93-107.

[本文引用: 1]     

[10] Gillespie A R,Bierman P R.

Precision of terrestrial exposure ages and erosion rates estimated from analysis of cosmogenic isotopes produced in situ

[J].Journal of Geophysical Research-Solid Earth,1995,100:24637-24649.

[本文引用: 1]     

[11] Smith J A,Finkel R C,Farber D L,et al.

Moraine preservation and boulder erosion in the tropical Andes: interpreting old surface exposure ages in glaciated valleys

[J].Journal of Quaternary Science,2005,20:735-758.

[本文引用: 4]     

[12] 王建,张志刚,徐孝彬,.

青藏高原东南部稻城古冰帽南缘第四纪冰川活动的宇生核素年代研究

[J].第四纪研究,2012,32(3):394~402.

[本文引用: 2]     

[13] Hein A S,Hulton N R J,Dunai T J,et al.

Middle Pleistocene glaciation in Patagonia dated by cosmogenic-nuclide measurements on outwash gravels

[J].Earth and Planetary Science Letters,2009,286:184-197.

[本文引用: 2]     

[14] Owen L A,Robinson R,Benn D I,et al.

Quaternary glaciation of Mount Everest

[J].Quaternary Science Reviews,2009,28:1412-1433.

[本文引用: 3]     

[15] Owen L A,Frankel K L,Knott J R,et al.

Beryllium-10 terrestrial cosmogenic nuclide surface exposure dating of Quaternary landforms in Death Valley

[J].Geomorphology,2011,125:541-577.

[本文引用: 2]     

[16] Seong B A,Owen L A,Yi C L,et al.

Quaternary glaciation of Muztag Ata and Kongur Shan: Evidence for glacier response to rapid climate changes throughout the Late Glacial and Holocene in westernmost Tibet

[J].Geological Society of America Bulletin,2009,121(3/4):348-365.

[本文引用: 3]     

[17] Zech R,Zech M,Kubik P W,et al.

Deglaciation and landscape history around Annapurna, Nepal,based on 10Be surface exposure dating

[J].Quaternary Science Reviews,2009,28:1106-1118.

[18] Heyman J,Stroeven A P,Caffee M W,et al.

Palaeoglaciology of Bayan Har Shan, NE Tibetan Plateau: exposure ages reveal a missing LGM expansion

[J].Quaternary Science Reviews,2011,30:1988-2001.

[本文引用: 1]     

[19] Zahno C,Akcar N,Yavuz V,et al.

Chronology of Late Pleistocene glacier variations at the Uludag Mountain, NW Turkey

[J].Quaternary Science Reviews,2010,29:1173-1187.

[本文引用: 2]     

[20] Darnault R,Rolland Y,Braucher R,et al.

Timing of the last deglaciation revealed by receding glaciers at the Alpine-scale:impact on mountain geomorphology

[J].Quaternary Science Reviews,2012,31:127-142.

[21] Larsen N K,Linge H,Hakansson L,et al.

Investigating the last deglaciation of the Scandinavian Ice Sheet in southwest Sweden with 10Be exposure dating

[J].Journal of Quaternary Science,2012,27(2):211-220.

[本文引用: 1]     

[22] Rinterknecht V,Braucher R,Bose M,et al.

Late Quaternary ice sheet extents in northeastern Germany inferred from surface exposure dating

[J].Quaternary Science Reviews,2012,44:89-95.

[本文引用: 1]     

[23] Roberts D H,Long A J,Schnabel C,et al.

Ice sheet extent and early deglacial history of the southwestern sector of the Greenland Ice Sheet

[J].Quaternary Science Reviews,2009,28:2760-2773.

[本文引用: 2]     

[24] Stroeven A P,Fabel D,Codilean A T,et al.

Investigating the glacial history of the northern sector of the Cordilleran Ice Sheet with cosmogenic 10Be concentrations in quartz

[J].Quaternary Science Reviews,2010,29:3630-3643.

[本文引用: 1]     

[25] Hein A S,Hulton N R J,Dunai T J,et al.

The chronology of the Last Glacial Maximum and deglacial events in central Argentine Patagonia

[J].Quaternary Science Reviews,2010,29:1212-1227.

[本文引用: 1]     

[26] Todd C,Stone J,Conway H,et al.

Late Quaternary evolution of Reedy Glacier,Antarctica

[J].Quaternary Science Reviews,2010,29:1328-1341.

[本文引用: 1]     

[27] Altmaier M,Herpers U,Delisle G,et al.

Glaciation history of Queen Maud Land (Antarctica) reconstructed from in-situ produced cosmogenic 10Be,26Al and 21Ne

[J].Polar Science,2010,4:42-61.

[28] Johnson J S,Bentley M J,Roberts S J,et al.

Holocene deglacial history of the northeast Antarctic Peninsula—A review and new chronological constraints

[J].Quaternary Science Reviews,2011,30:3791-3802.

[29] Fogwill C J,Hein A S,Bentley M J,et al.

Do blue-ice moraines in the Heritage Range show the West Antarctic ice sheet survived the last interglacial?

[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2012,335-336:61-70.

[本文引用: 1]     

[30] 余叔同,郑粉莉,张鹏.

基于插件技术和GIS的坡面土壤侵蚀模拟系统

[J].地理科学,2010,30(3):441~445.

[本文引用: 1]     

[31] 林晨,周生路,吴绍华.

30年来东南红壤丘陵区土壤侵蚀度时空演变研究——以长汀县为例

[J].地理科学,2011,31(10):1235~1241.

[本文引用: 1]     

[32] 孙丽萍,王小丹.

基于根系解剖结构的金沙江干热河谷土壤侵蚀速率估算

[J].地理科学,2012,32(4):492~498.

[本文引用: 1]     

[33] 韩海辉,高婷,易欢,.

基于变点分析法提取地势起伏度——以青藏高原为例

[J].地理科学,2012,32(1):101~104.

[本文引用: 1]     

[34] Dahl R.

Postglacial micro-weathering of bedrock surfaces in the Narvik district of Norway

[J].Geografiska Annaler,1967,49A:155-166.

[本文引用: 2]     

[35] Andre M F.

Rates of postglacial rock weathering on glacially scoured outcrops (Abisko-Risksransen area,68°N)

[J].Geografiska Annadler,2002,84A(3-4):139-150.

[本文引用: 1]     

[36] Wang J,Raisbeck G,Xu X B,et al.

In Situ Cosmogenic 10Be dating of the Quaternary glaciations in the southern Mountain Shaluli on the Southeastern Tibetan Plateau

[J].Science in China (D):Earth Science,2006,38(8):706-712.

[本文引用: 1]     

[37] Lal D.

Cosmicray labeling of erosion surfaces:in situ nuclide production rates and erosion models

[J]. Earth and Planetary Science Letters,1991,104:424-439.

[本文引用: 3]     

[38] Matsuoka N,Thomachot C E,Oguchi C T,et al.

Quaternary bedrock erosion and landscape evolution in the Sør Rondane Mountains,East Antarctica:Reevaluating rates and processes

[J].Geomorphology,2006,81:408-420.

[本文引用: 1]     

[39] Bierman P R,Caffee M.

Cosmogenic exposure and erosion history of Australian bedrock landforms

[J].Geological Society of America Bulletin,2002,114:787-803.

[本文引用: 1]     

[40] Small E E,Anderson R S,Repka J L,et al.

Erosion rates of alpine bedrock summit surfaces deduced from in situ 10Be and 26Al

[J].Earth and Planetary Science Letters,1997,150:413-425.

[本文引用: 1]     

[41] Schaller M,Von Blanckenburg F,Hovius N,et al.

Large-scale erosion rates from in situ-produced cosmogenic nuclides in European river sediments

[J].Earth and Planetary Science Letters,2001,118:441-458.

[本文引用: 1]     

[42] Kong P,Na C G,Fink D.

Erosion in northwest Tibet from in-situ-produced cosmogenic 10Be and 26Al in bedrock

[J].Earth Surface Processes and Landforms,2007,32:116-125.

[本文引用: 1]     

[43] Balco G,Stone J O,Lifton N A,et al.

A complete and easily accessible means of calculating surface exposure ages or erosion rates from Be-10 and Al-26 measurements

[J].Quaternary Geochronology,2008,3:174-195.

[本文引用: 1]     

[44] Stone J O.

Air pressure and cosmogenic isotope production

[J].Journal of Geophysical Research,2000,105:23753-23759.

[本文引用: 1]     

/