Scientia Geographica Sinica  2014 , 34 (1): 97-102 https://doi.org/10.13249/j.cnki.sgs.2014.01.97

Orginal Article

长江口水下三角洲239+240Pu和137Cs的分布特征及环境意义

曹立国, 潘少明, 刘旭英, 徐仪红, 徐伟

南京大学地理与海洋科学学院 海岸与海岛开发教育部重点实验室, 江苏 南京 210023

Distribution Characteristics of 239+240Pu and 137Cs in Subaqueous Delta at the Changjiang River Estuary and the Environmental Significance

CAO Li-guo, PAN Shao-ming, LIU Xu-ying, XU Yi-hong, XU Wei

Ministry of Education Key Laboratory for Coastal and Island Development, School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, Jiangsu 210023, China

中图分类号:  P73

文献标识码:  A

文章编号:  1000-0690(2014)01-0097-06

通讯作者:  潘少明,教授。E-mail: span@nju.edu.cn

收稿日期: 2013-03-20

修回日期:  2013-05-16

网络出版日期:  2014-01-10

版权声明:  2014 《地理科学》编辑部 本文是开放获取期刊文献,在以下情况下可以自由使用:学术研究、学术交流、科研教学等,但不允许用于商业目的.

基金资助:  国家自然科学基金项目(41166002,41271289,41230751)资助

作者简介:

作者简介:曹立国(1986-),男,吉林白山人,博士研究生,主要从事放射性核素的应用研究。E-mail: caoliguo19860413@126.com

展开

摘要

在长江口水下三角洲采集沉积物柱状样SC07,通过测试沉积物柱样中239+240Pu和137Cs的活度,重点分析239+240Pu活度的分布特征及其与137Cs活度剖面的异同,以提取239+240Pu活度剖面中的信息。结果表明:239+240Pu活度剖面中存在与137Cs一致的1963年蓄积峰和1958年次蓄积峰,且两者呈较显著的线性相关关系(R2=0.765),表明在动力环境较强的河口地区,239+240Pu与137Cs仍可以反映相同的沉积过程。239+240Pu活度起始层位对应于1948年,而137Cs对应于1954年,表明239+240Pu具有更高的测试灵敏度。SC07柱状样中137Cs/239+240Pu的同位素比值比全球均值低,说明239+240Pu存在区域沉降来源。

关键词: 239+240Pu活度 ; 137Cs活度 ; 柱状样沉积物 ; 长江口水下三角洲

Abstract

The sediment core SC07 was collected in the subaqueous delta at the Changjiang River estuary. Radioisotopes of 239+240Pu and 137Cs were analyzed focusing on discussing the distribution characteristics of activity profile, then the difference between 239+240Pu and 137Cs profiles were obtained. Results displayed that, there were the same cumulative peaks of 1963 and 1958 both in 239+240Pu activity profile and in 137Cs profile. The 239+240Pu activity profile showed a good agreement with the 137Cs profile (R2=0.765), that is to say, they can convey the same information about sedimentation processes. The start layer of 239+240Pu activity was corresponding to 1948 while 137Cs was corresponding to 1954, which showed the more measurement sensitivity of 239+240Pu. 137Cs/239+240Pu activity ratio was quite different after moratorium on nuclear testing, which really did good to dating for the sediments. Moreover, the 137Cs/239+240Pu activity ratio played an important role in distinguishing nuclide source in the environment. Meanwhile, it has been seen that 137Cs/239+240Pu activity ratio of the sediments core was lower than the global average, indicating that 239+240Pu activity concentrations were partly from close-in fallout. 239+240Pu activity in the sediment core was between 0.072-0.716 mBq/g and 137Cs was between 0.390-16.210 mBq/g. 239+240Pu atmospheric fallout mainly concentrated in the 63-111 cm, while the 239+240Pu activity between 0-45 cm decreased obviously. There were one peak (71 cm) and two sub-peaks (63 cm and 99 cm) in the vertical profiles of 239+240Pu. It needs to be mentioned that the peak at 71 cm was corresponding to the year 1963. The cumulative sub-peak at 63 cm may be caused by China's nuclear test that happed during the 1970s-1980s. Also, the cumulative peak (73 cm) in the vertical profiles of 137Cs was corresponding to the year 1963, which was nearly the same with vertical profiles of 239+240Pu. Because of the extremely complicated dynamic action of Changjiang River estuary area, the existence of cumulative peak of 1986 the vertical profiles of 137Cs was still needs further research. In a word, it has been suggested that the radionuclide 137Cs, 239+240Pu and the activity ratio were useful tools in studying the material source, evolution of the delta, as well as the deposition rate.

Keywords: 239+240Pu activity ; 137Cs activity ; sediment core ; the subaqueous delta at the Changjiang River estuary

0

PDF (394KB) 元数据 多维度评价 相关文章 收藏文章

本文引用格式 导出 EndNote Ris Bibtex

曹立国, 潘少明, 刘旭英, 徐仪红, 徐伟. 长江口水下三角洲239+240Pu和137Cs的分布特征及环境意义[J]. , 2014, 34(1): 97-102 https://doi.org/10.13249/j.cnki.sgs.2014.01.97

CAO Li-guo, PAN Shao-ming, LIU Xu-ying, XU Yi-hong, XU Wei. Distribution Characteristics of 239+240Pu and 137Cs in Subaqueous Delta at the Changjiang River Estuary and the Environmental Significance[J]. Scientia Geographica Sinica, 2014, 34(1): 97-102 https://doi.org/10.13249/j.cnki.sgs.2014.01.97

长江是中国的第一大河,近几十年来流域内人类活动不断加强[1]。表现为水资源的开发利用率不断增加[2],生态系统退化威胁程度处于较为严重的状态[3],加上跨流域的调水工程实施,对河流入海泥沙产生明显的改变[4],直接引起河口三角洲及其邻近海岸的冲淤演变。

认识区域环境变化和环境污染历史必须以精确的年代学研究作为基础[5],环境中存在的放射性同位素便是研究现代地球化学和沉积过程的理想示踪元素。近几十年来,放射性同位素作为示踪元素应用于各种沉积环境中,示踪沉积物的年代、输运、沉积过程、土壤侵蚀以及环境污染历史[6-12]。然而,由于137Cs的半衰期较短,为30.2 a,到目前为止,环境中的137Cs总量已经衰变了60%,1963年的峰值已衰变到原来的1/3[13,14]。因此,这将使137Cs作为示踪元素的灵敏度受到影响。239+240Pu是一种人造放射性核素,主要来源于1945~1980年间的大气核试验,且239Pu与240Pu的半衰期分别为24 110 a和6 561 a,这意味着环境中的239Pu、240Pu总量基本没有变化。众多研究表明[15-17], 239+240Pu对于细颗粒沉积物和土壤具有更强的吸附能力。由于质谱技术的发展[18],使得239+240Pu的测量比137Cs的测量具有更高的灵敏度。

近年来一些学者将239+240Pu结合137Cs运用于现代沉积过程研究中,取得了较好的成果,239+240Pu成为一种非常理想的放射性同位素示踪元素,引起广泛关注。在东海、长江口、日本沿岸海域、冲绳海槽等海域以及世界各地区的河流、湖泊等沉积物中对239+240Pu的地球化学分布进行了大量的研究[19-21]。根据240Pu/239Pu、137Cs/239+240Pu比值示踪沉积物的来源及输运过程[14,22-25]以及研究239+240Pu在水柱中的清除作用过程和地球化学行为[26-30]239+240Pu不存在沉降前的迁移过程且测试灵敏度较137Cs高,因此,在河口海岸沉积环境中239+240Pu能够提供更可靠的沉积年代信息[14]。本研究通过对长江口水下三角洲柱状样沉积物中239+240Pu放射性同位素的分布特征进行研究,探明长江口沉积物中239+240Pu的分布、地球化学特征及与137Cs的地球化学行为的异同,为长江河口水下三角洲近50 a来的沉积过程,三角洲的演变等提供科学依据。

1 资料与方法

1.1 样品采集

于2006年4月,使用重力取样器在长江口水下三角洲(31ºN,122ºE)进行沉积物柱状样采集(图1),水深为10.4 m,站位标号SC07,SC07柱状样的长度为140 cm。样品采集后,现场密封保存运回实验室。

图1   采样点区位

Fig.1   Location of the sampling point in study area

1.2 实验室分析

1) 239+240Pu活度分析。取沉积物样品4 g左右,加入由美国国家标准和技术研究所(分支号4 334)提供的242Pu标准参考溶液,利用AMS法进行样品的239+240Pu的测量[17]。AMS测量采用澳大利亚国立大学核物理系的14UD珠链式静电加速器。

2) 137Cs活度分析。放射性核素137Cs 分析采用γ谱仪直接测量的方法,137Cs 的含量用其661.62 keVγ射线的全能峰面积计算。仪器为美国ORTEC 公司生产的GMX30P-A 高纯Ge 同轴探测器。137Cs标准源由加拿大贝德福海洋研究所提供,放射性比活度为806.2 Bq/kg(标准源参考时间为2006 年9 月1 日),重65.4 g,测量时间为72 000 s,并且使用IAEA-327标样进行了比对校正。该实验在南京大学海岸与海岛开发教育部重点实验室完成。

2 结 果

2.1 239+240Pu的活度分布

柱状样SC07的239+240Pu、137Cs活度的垂向分布(图2),239+240Pu活度范围介于0.072~0.716 mBq/g,其中0~45 cm活度基本位于0.1~0.2 mBq/g,63~111 cm活度基本介于0.3~0.7 mBq/g,往下核素活度降低至0.1 mBq/g左右。239+240Pu核素大气沉降主要集中于63~111 cm间,而0~45 cm间 239+240Pu活度明显降低。239+240Pu活度随深度的变化如图2所示,剖面中239+240Pu活度存在一个最大峰和两个次级峰。最大峰位于71 cm左右,两个次级峰分别位于最大峰上部63 cm左右和下部99 cm左右。239+240Pu活度在最大峰与两个次级峰处的活度分别为0.716 mBq/g,0.523 mBq/g(63 cm)与0.573 mBq/g(99 cm)。

图2   SC07 239+240Pu与137Cs活度剖面

Fig.2   Vertical profiles of the 239+240Pu and 137Cs activities in the sediment core

图3为1957~2005年在日本Tsukuba岛监测的239+240Pu和137Cs年沉降量[31],1963年为239+240Pu最大沉降年,可推测出SC07柱状样中239+240Pu活度的最大值层位(71 cm)即为最大蓄积层位,对应于全球大气沉降年1963年。99 cm左右的次级峰则可能对应于239+240Pu的另一个重要沉降年1958年。从图3也可以看出在日本Tsukuba岛并未监测出1986年239+240Pu沉降峰。柱状样SC07站位中63 cm左右的次级峰与1963年最大蓄积峰所在深度位置十分相邻,理论上说也不可能对应于1986年次级峰。63 cm左右次级峰的形成可能与20世纪70~80年代中国核试验产生的区域沉降有关。

图3   1957~2005年日本筑波地区137Cs(圆形)和239+240Pu(正方形)的年沉降量(Bq/m2[31]

Fig.3   Annual deposition of 137Cs (closed circles) and 239+240Pu (closed squares) observed at Tsukuba in 1957-2005 (Bq/m2)

2.2 137Cs活度分布

137Cs活度范围介于0.390~16.210 mBq/g(图2),其中深度111 cm左右以下活度骤减并接近于0,此深度以下137Cs活度低于探测限。137Cs剖面在71 cm左右出现最大峰,在63、99、83与35 cm处分别出现次级峰。137Cs的分布特征与239+240Pu基本相似,可确定其71 cm处最大峰值与1963年沉降对应,蓄积峰值可能对应于1958年,结果与239+240Pu一致。在63 cm左右,239+240Pu与137Cs都存在一个峰值,通过239+240Pu的活度分布无法判定出其特定的蓄积年代,而在137Cs活度剖面中,可能对应于1974年蓄积峰。万国江等[5]在云南的洱海、程海、泸沽湖和贵州的红枫湖等西南地区的湖泊沉积研究中发现,137Cs活度剖面中存在1974年次蓄积峰。然而,Rowan 等[32]研究发现北半球137Cs年沉积量只存在1958、1963、1986三处峰值,1974年左右并无出现大的沉降量。因此,在SC07柱状样中是否存在1974年蓄积峰及63 cm左右的核素峰值是否对应于1974年蓄积峰仍需进一步的探讨。对于63 cm左右的峰值还有以下两种可能的解释:① 混合扩散作用导致连带峰的形成。② 流域泥沙所携带核素输入的滞后或变化。在动力作用极其复杂的长江口区域,1986年峰值的存在与确定仍需进一步的确凿证据。

2.3 137Cs/239+240Pu活度比值

柱状样SC07中137Cs/239+240Pu比值随深度变化如图4所示,1~71 cm段137Cs/239+240Pu均值为25.85,75~140 cm段137Cs/239+240Pu均值为12.83。对Koide等[33]在格陵兰与南极冰芯柱状样中的137Cs/239+240Pu比值中137Cs进行衰变校正至2007年1月1日,分别为12.00~21.03,36.91~43.62,与SC07站位的75~140、1~71 cm段比值结果基本一致。可见柱状样SC07中75 cm以下对应于暂停核试验前1952~1958年间的大气核试验阶段,71 cm以上核素来源于暂停核试验后的全球大气沉降,可进一步证实239+240Pu和137Cs的1963年层位标定的准确性。

图4   SC07柱状样137Cs/239+240Pu分段平均比值

Fig.4   The 137Cs/239+240Pu average atom ratio distribution at the two stages in sediment core

同时,137Cs/239+240Pu比值也是判别环境中核素来源的一个重要指标。Zheng 等[34]测得程海湖137Cs/239+240Pu比值平均值为46.51,与全球大气沉降值基本一致。SC07柱状样137Cs/239+240Pu比值为17.42(137Cs衰变校正至2006年9月1日)或17.32(137Cs衰变校正至2007年1月1日),可以明显地看出研究区的137Cs/239+240Pu比值偏低,说明239+240Pu存在区域沉降来源。

2.4 239+240Pu与137Cs定年的可比性

对柱状样SC07中的239+240Pu与137Cs活度进行相关性分析(图5),将137Cs活度校正至2006年9月1日,得出两者具有显著相关性(R2=0.616),进一步将137Cs活度校正至沉降时间,两者显示极强的相关性(R2=0.765)。这说明即使在动力环境较强的河口地区,239+240Pu与137Cs仍可以反映相同的沉积过程。因此,可以根据239+240Pu活度剖面信息进行沉积物年代的确定,并将之与137Cs测年结果相互结合。

图5   SC07 239+240Pu与137Cs的活度相关性分析

Fig.5   Correlation analysis between 239+240Pu and 137Cs activity

3 结 论

1) SC07沉积物中239+240Pu活度存在1963年蓄积峰与1958年次蓄积峰,在蓄积峰层位以上存在的239+240Pu峰值,是流域内核素蓄积峰滞后输入或该站位沉降蓄积峰混合扩散形成的。

2) SC07沉积物中239+240Pu与137Cs活度剖面存在一致的蓄积峰层位,两者呈较强的线性相关性(R2=0.765),这说明在动力环境较强的河口地区,239+240Pu与137Cs仍可以反映相同的沉积过程,因此可根据239+240Pu活度剖面信息进行沉积物年代的确定。

3) 区域239+240Pu与137Cs具有两种共同来源途径,即大气沉降直接输入与流域输入来源,而137Cs/239+240Pu比值偏低,表明239+240Pu可能存在外海输入。

The authors have declared that no competing interests exist.


参考文献

[1] 戴志军,李九发,赵军凯,.

特枯2006年长江中下游径流特征

[J].地理科学,2010,30(4):577~581.

[本文引用: 1]     

[2] 王静静,刘敏,权瑞松,.

沿海港口自然灾害风险评价

[J].地理科学,2012,32(4):516~520.

[本文引用: 1]     

[3] 任平,程武学,洪步庭,.

基于PSDR理论框架下长江上游生态系统退化威胁评价与空间分布研究

[J].地理科学,2013,33(2):189~194.

[本文引用: 1]     

[4] 张强,孙鹏,陈喜,.

1956~2000年中国地表水资源状况:变化特征、成因及影响

[J].地理科学,2011,31(12):1430~1436.

[本文引用: 1]     

[5] 万国江.

现代沉积年分辨的137Cs计年——以云南洱海和贵州红枫湖为例

[J].第四纪研究,1999,19(1):73~80.

[本文引用: 2]     

[6] Robbins J A,Edgington D N.

Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137

[J].Geochimica et Cosmochimica Acta,1975,39(3):285-304.

[本文引用: 1]     

[7] DeMaster D J,McKee B A,Nittouer C A,et al.

Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental shelf deposits in the East China Sea

[J]. Continental Shelf Resarch,1985,4(1):143-158.

[8] Chanton J P,Martens C S,Kipphut G W.

Lead-210 sediment geochronology in changing coastal environment

[J].Geochim.Cosmochim. Acta,1989,47(10):1791-1840.

[9] Smith J N,Ellis K M.

Transport mechanism for 210Pb,137Cs and Pu fallout radionuclides through fluvial-marine systems

[J].Ceochim.Cosmochim.Acta.,1982,46(6):941-954.

[10] 潘少明,施晓东,Smith J N.

海南岛三亚港现代沉积速率的研究

[J].海洋与湖沼,1995,26(2):132~137.

[11] 潘少明,施晓冬,王建业,.

围海造地工程对香港维多利亚港现代沉积作用的影响

[J].沉积学报,2000,18(1):2~28.

[12] Ketterer M E,Hafer K M,Jones V J,et al.

Rapid dating of recent sediments in Loch Ness: inductively coupled plasma mass spectrometric measurements of global fallout plutonium

[J].Science of the Total Environment,2004,322(1):221-229.

[本文引用: 1]     

[13] Everett S E,Tims S G,Hancock G J,et al.

Comparison of Pu and 137Cs as tracers of soil and sediment transport in a terrestrial environment

[J].Journal of Environmental Radioactivity,2008,99(2):383-393.

[本文引用: 1]     

[14] Hanson W C.

Ecological considerations of the behavior of plutonium in the environment

[J].Health Physics, 1975,28(5):529-537.

[本文引用: 3]     

[15] Hakonson T E,Watters R L,Hanson W C.

The transport of plutonium in terrestrial ecosystems

[J].Health Physics,1981,40(1):63-69.

[本文引用: 1]     

[16] Coughtrey P J,Thorne M C.

Radionuclide distribution and transport in terrestrial and aquatic ecosystems

[J].Journal of Environmental Radioactivity,1984,1(2): 165-167.

[17] Fifield L K,Creswell R G,di Tada M L,et al.

Accelerator mass spectrometry of plutonium isotopes

[J].Nuclear Instruments and Methods in Physics Research B,1996,117(3):295-303.

[本文引用: 2]     

[18] Guinasso N L,Schink D R.

Quantitative estimates of biological mixing rates in abyssal sediments

[J].Journal of Geophysics Research,1975,80(21):3032-3043.

[本文引用: 1]     

[19] Pan S M,Tims S G,Liu X Y,et al.

137Cs,239+ 240Pu concentrations and the 240Pu/239Pu atom ratio in a sediment core from the sub-aqueous delta of Yangtze River estuary

[J].Journal of environmental radioactivity, 2011,102(10): 930-936.

[本文引用: 1]     

[20] Krishnaswamy S,Lal D,Martin J M,et al.

Geochronology of lake sediments

[J].Earth and Planetary Science Letters,1971,11(1):407-414.

[21] Huh C A,Su C C.

Sedimentation dynamics in the East China Sea elucidated from 210Pb,137Cs and 239+240Pu

[J].Marine Geology,1999,160(2):183-196.

[本文引用: 1]     

[22] Krey P W,Hardy E P,Pachucki C,et al.

Mass isotopic composition of global fallout plutonium in soil

[J].Transuranium Nuclides in the Environment IAEA,1976,20(2):671-678.

[本文引用: 1]     

[23] Buesseler K O.

The isotopic signature of fallout plutonium in the North Pacific

[J].Journal of Environmental Radioactivity,1997,36(1):69-83.

[24] Zheng J,Yamada M.

Sediment core record of global fallout and Bikini close-in fallout Pu in Sagami Bay,western Northwest Pacific margin

[J]. Environmental Science and Technology,2004,38(13): 3498-3504.

[25] Yamada M,Zheng J,Wang Z L.

240Pu/239Pu atom ratios in seawater from Sagami Bay, western Northwest Pacific Ocean:sources and scavenging

[J].Journal of Environmental Radioactivity,2007,98(3):274-284.

[本文引用: 1]     

[26] Fowler S W,Ballestra S,Rosa J L,et al.

Vertical transport of particulate-associated plutonium and americium in the upper water column of the northeast Pacific

[J].Deep-Sea Research,1983,30(12):1221-1233.

[本文引用: 1]     

[27] Livingston H D,Anderson R F.

Large particle transport of plutonium and other fallout radionuclides to the deep ocean

[J].Nature,1983,303(19):228-230.

[28] Nagaya Y,Nakamura K.

239,240Pu,137Cs and 90Sr in the central North Pacific

[J].Journal of the Oceanographical Society of Japan,1984,40(6):416-424.

[29] Nagaya Y,Nakamura K.

Artificial radionuclides in the western Northwest Pacific (II):137Cs and 239,240Pu inventories in water and sediment columns observed from 1980 to 1986

[J].Journal of the Oceanographical Society of Japan,1987,43(6):345-355.

[30] Nagaya Y,Nakamura K.

Distributions and mass-balance of 239,240Pu and 137Cs in the northern North Pacific

[J].Elsevier Oceanography Series,1993,59:157-167.

[本文引用: 1]     

[31] Hirose K,Igarashi Y,Aoyama M,et al.

Analysis of the 50-year records of the atmospheric deposition of long-lived radionuclides in Japan

[J].Applied Radiation and Isotopes,2003,5(11):302-307.

[本文引用: 2]     

[32] Rowan J S.

Geomorphology and sedimentology of lakes and reservoirs

[M].Chichester:John Wiley&Sons Ltd, 1993:51-71.

[本文引用: 1]     

[33] Koide M,Bertine K K,Chow T J,et al.

The 240Pu/239Pu ratio,a potential geochronometer

[J].Earth and Planetary Science Letters,1985,72(1):1-8.

[本文引用: 1]     

[34] Zheng J,Liao H Q,Wu F C,et al.

A study of the vertical distributions of 239+240Pu activity and 240Pu/239Pu atom ratio in sediment core of Lake Chenghai, SW China

[J].Journal of Radioanalytical and Nuclear Chemistry,2008, 275(1):37-42.

[本文引用: 1]     

/