Scientia Geographica Sinica  2015 , 35 (5): 644-651

Orginal Article

黄柏山树轮生长对气候因子的响应及模拟

彭剑峰1, 王婷2

1.河南大学资源与环境研究所/河南大学环境与规划学院, 开封 河南 475004
2. 河南农业大学林学院, 郑州 河南 450002

Response and Model of Tree-rings Growth to Climate Factors at Huangbaishan Mountain in Henan Province

PENG Jian-feng1, WANG Ting2

1.Institute of Resource and Environment, College of Environment and Planning, Henan University, Kaifeng, Henan 475004, China
2.College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China

中图分类号:  P935

文献标识码:  A

文章编号:  1000-0690(2015)05-0644-08

收稿日期: 2014-01-28

修回日期:  2014-03-10

网络出版日期:  2015-05-20

版权声明:  2015 《地理科学》编辑部 本文是开放获取期刊文献,在以下情况下可以自由使用:学术研究、学术交流、科研教学等,但不允许用于商业目的.

基金资助:  国家自然基金项目(31270493)、河南省教育厅自然科学基金项目(2011B170003)、河南大学校内科研基金重点项目(2010ZRZD06)、河南大学资源与环境研究所项目(HD-2HS-2010-02)资助

作者简介:

作者简介:彭剑峰(1965-),男,河南南阳人,副教授,博士,主要从事树轮气候学和生态学。E-mail:jianfengpeng@163.com

展开

摘要

利用大别山西部的3个黄山松(Pinus taiwanensis Hayata)树木年轮采样点的样本,建立3个标准年表,其特征值都表明黄山松树木年轮宽度中含有较高的环境信息;年表间相关密切,区域主要受气候因子影响、南北差异显著;年表与气候因素的相关也显示不同环境生长的黄山松差异性要大于共性;同样多元线性回归也确定该研究区影响树木生长的主导因子为前一年10月的均温,而前一年8月的降水同样起着非常重要的作用。不同要素的模拟结果有较好的一致性,但极端气候条件下树木的生长差异显著。

关键词: 树木年轮 ; 气候响应 ; 大别山 ; 黄山松

Abstract

We developed three tree-ring width standard chronology from three Huangshan pine (Pinus taiwanensis) tree-ring sampling sites at Huangbaish Mountain in the western Dabieshan Mountain, Xinyang City of Henan Province. 1) 3 standard chronologies were developed by using the international general method of tree rings, the results of their chronology eigenvalues and statistical characteristics from common times indicated that higher environmental information was contained in Huangshan Pine tree-rings, nevertheless the first-order autocorrelation coefficient showed that there was the larger influence from the prior period of the tree-ring growth; 2) The results of correlation analysis (CA) and principal component analysis (PCA) showed that they closely related among 3 standard chronologies, but the result of PCA indicated that PC1 standing for the dominant factor was the climate environment factor and significant difference found from north to south, and PC2 and PC3 showed high altitude and sunny slope were conducive to the growth of Huangshan Pine; 3) Based on dendroclimatological analyses the relationships between tree-ring width indexes of whole research region and 3 sampling sites and climatic factors were detected there were some common impact factors to Huangshan Pine from different growth environment, but much more difference than that of in common; 4) By using multiple linear regression method, the regional tree-ring growth patterns were established about different influence factors, the stepwise linear regression results also identified that the dominant factor of affect trees growth in the whole study area was prior October temperature, and precipitation of previous August also plays a very important role in tree growth process. The results verify these of dendroclimatological research. The models of different elements have good consistency; tree growth difference is remarkable under extreme weather conditions.

Keywords: tree-ring ; climatic response ; Dabieshan Mountain ; Huangshan pine

0

PDF (560KB) 元数据 多维度评价 相关文章 收藏文章

本文引用格式 导出 EndNote Ris Bibtex

彭剑峰, 王婷. 黄柏山树轮生长对气候因子的响应及模拟[J]. , 2015, 35(5): 644-651 https://doi.org/

PENG Jian-feng, WANG Ting. Response and Model of Tree-rings Growth to Climate Factors at Huangbaishan Mountain in Henan Province[J]. Scientia Geographica Sinica, 2015, 35(5): 644-651 https://doi.org/

森林是大自然的调度师,调节着自然界中大气和水分循环,影响着气候的变化。反之,森林中的树木在不同的环境条件下存在着很大的生长差异,树木年轮的宽窄不仅受大的气候环境的影响,而且也受复杂的下垫面即立地条件的制约,使大多数树木年轮宽窄变化能够真实地记录树木历年的生长情形及不同立地条件下气候要素的变化规律。树木年轮以其定年准确、连续性强、分辨率高和易于获取复本等显著特点[1,2]而被用于环境变化研究,使其成为重要研究手段之一。2003年以后,国内外树木年轮研究业已获得突飞猛进的发展,中国的树木年轮研究同样进入了快速发展时期,但研究区域主要集中在生态脆弱的高寒地区[2~11]、干旱区[12~16]和生态敏感的季风边缘区[17]等。

大别山处于北亚热带与暖温带的过渡地带,其北坡系北亚热带北缘山区,是一重要的生态敏感区和气候-植被等的过渡区。这里生长的树木,常常因微环境的差别而表现出很大的不同,微环境改变了原有的热量和水分分配,使树木的生长变化更为复杂,会影响山地森林带的变化[18],即使同一坡面也会因坡向、海拔的变化而出现变异[19],水平尺度上更有“十里不同天”的多彩景观,阔叶林、针叶林和针阔混交林在大别山都有分布,因此丰富的森林资源为树木年轮空间差异研究提供了良好的条件。国内外树木年轮生长与环境因子诸如坡向[19~24]、海拔[19,25~30]和水平格局[9~10,31,32]等的关系研究也不少,但大别山地区树木年轮研究还仅限于郑永宏等[33]高海拔地区的2种树种对比研究,因此在大别山西部北坡开展树木年轮与环境因子关系的研究对该区域今后的气候重建有一定的指导意义,同时也为区域森林管理提供一些科学依据。

1 资料与方法

1.1 研究区概况

大别山位于中国安徽、河南、湖北三省交界处,介于112°40′~117°10′E,30°10′~32°30′N,东西绵延约380 km,南北宽约175 km。西段西北-东南走向,一般海拔500~800 m,山地主要部分海拔1 500 m左右,是长江与淮河的分水岭。大别山属北亚热带,温暖湿润,具有优越的山地气候和森林小气候特征。年平均气温12.5℃,≥10℃积温4 500~5 500℃,平均年降水量1 832.8 mm,年降水日数161 d,空气相对湿度平均79%,年日照时数平均1 400~1 600 h,无霜期179~190 d,森林资源丰富。大别山海拔差异大,植被变化明显,400~1 700 m的高度都有森林分布,主要针叶树有:杉木(Cunninghamia lanceolata),柳杉(Cryptomeria fortunei),马尾松(Pinus massoniana Lamb),黄山松(Pinus taiwanensis Hayata)等。其中黄山松是中国特有树种,喜阳较耐寒、喜酸性土壤耐瘠薄,广布于大别山及浙、闽、湘、赣、台湾等地,生长在海拔800 m以上的高峰山顶、陡坡、山脊、裸岩等地段。

表1   采样点基本概况及树木年轮标准年表的统计特征

Table 1   Survey of sampling sites and statistical characteristics of the standard tree-ring width chronologies from Huangbaishan Mountain

特征XLHDXGJFJ
经度E115°19′115°20′115°23′
纬度N31°24′31°27′31°28′
海拔高度(m)840~760760988~1010
坡向西北
总样本量(芯/树)56/3636/1830/22
年表研制样本量(芯/树)48/3235/1820/13
年表时段(年)1915~20111971~20111964~2011
平均敏感度0.3210.3010.300
标准方差1.4901.4971.621
一阶自相关系数0.7520.6290.749
公共区间年份(年)1980~20101980~20101980~2010
所有样芯间相关R10.3520.3590.319
树木内相关R20.7110.660.490
树木间相关R30.3470.350.314
信噪比23.40815.6758.445
样本解释总量0.9590.940.894

新窗口打开

黄柏山隶属河南省信阳市商城县,位于大别山西部的豫、鄂、皖三省交界处,系淮河支流灌河的发源地,处于北亚热带向南暖温带过渡地带,四季分明,雨量充沛,气候宜人。

采样点布局在河南省商城县的黄柏山林场的小林海(XLH)、大峡谷(DXG)和九峰尖(JFJ)附近(图1)。遵循一定的采样策略[4]:样本未受火灾、虫害等外界因素的干扰,采集树龄长短不同、小生境不同的样本等;按照敏感性原则、生态环境原则和复本原则等[34],每个采样点都在15株树以上,每树用生长锥在胸径位置的不同方向取1~2芯作为样本,样本树多为树龄较长的健康树(表1)。

图1   树轮采样点和相邻气象站

Fig.1   Location of tree-ring sampling sites and the closest meteorological stations

1.2 建立年表

野外获取的样品带回实验室进行处理,其基本过程是按照Stokes和Smiley的方法[35]进行:先晾干、再固定和磨平打光、测量树木年轮宽度,最后利用COFECHA程序[36]对交叉定年和测量结果进行检验,为建立准确的年表提供数据和技术上的支持和保证。树木年轮宽度年表的建立就是通过ARSTAN程序[37]采用负指数函数或样条函数拟合去掉树木本身遗传因子产生的生长趋势和树木之间干扰竞争产生的抑制和释放等的生长趋势,然后利用样本序列值和其拟合生长曲线值的商进行订正使其标准化,最后得出3种不同形式的年表:标准年表(STD)、差值年表(RES)和自回归年表(ARS)。本文利用标准年表(STD,图2)进行相关的研究。

图2   3个黄山松采样点的树木年轮宽度标准年表(STD)及样本量

Fig.2   The three standard tree-ring width chronologies and sampling numbers of Huangshan Pine

1.3 气候数据的选择

本文选取距采样点较近的湖北省麻城县气象站(31°11′N,115°01′E)的器测资料(1959~2011年)作为参考(数据来源于国家气候中心,图3)。该站多年平均气温为16.4℃,最热月7月多年平均气温为28.6℃,平均最高气温为33℃;最冷月1月多年平均气温为3.3℃,平均最低气温-0.3℃。年降水总量682.7~1 878.4 mm,多年平均降水量为1 213.3 mm;7月降水最多,多年平均为228.1 mm;多年平均中6、7月降水占全年降水的35%。

图3   麻城气象站月均气温T、月均高温Tmax、月均低温Tmin和月降水量P年内分配(1959~2011年)

Fig.3   Monthly mean air temperature, monthly maximum air temperature, monthly minimum air temperature and monthly precipitation in Macheng meteorological station of Hubei in 1959-2011

1.4 研究方法

本文利用主成分分析[38]可能归纳出不同环境生长的黄山松宽度年表所包含的树木径向生长的共同区域变化特征,同时也可能分析出不同环境树木生长过程中影响因子的异同;利用年表的权重或载荷来表达采样点与主成分间的生长特征关系:权重越高关系越密切[39]。利用PCA软件[40] 对3个树木年轮宽度年表在1971~2010年的共同区间上进行主成分分析。然后选取树木年轮学专业软件Dendro2002[41]对树木年轮宽度指数与气候因子的关系进行简单相关分析,以寻求黄柏山地区及不同坡面黄山松树木生长的限制因子。本研究选用麻城县气象站前一年的5月至当年的10月共18个月的月平均气温、月最高平均气温、月最低平均气温和月降水量等气象要素与区域树木年轮年表的第一主分量和不同坡面黄山松的树木年轮宽度年表指数进行相关分析,以其研究黄柏山地区黄山松生长的共性和不同坡面黄山松生长的个性特征。最后利用SPSS软件[42]对该研究区的显著影响因子进行多元回归分析和逐步多元回归分析,建立研究区的树木年轮生长与气候因子的回归方程,确定其主要的限制因子和生态模式。

2 结果与讨论

2.1 树木年轮宽度年表的特征差异

表1看出,3个采样点的平均敏感度(M.S.)都在0.3以上,表明黄柏山地区黄山松树木年轮宽度中含有较高的环境信息;一阶自相关系数(A.C.)值在0.629~0.752之间,说明这一地区前一年树木年轮的生长量强烈地影响着下一年的树木年轮生长。在公共区间1980~2010年间,XLH、DXG和JFJ采样点的树木年轮标准年表(STD)都有较高的信噪比(SNR)——分别为23.408、15.675和8.445,和较高的样本解释量(EPS)——即为0.959、0.940和0.894,表明不同坡面生长的树木都含有较多的环境信息。

2.2 树木年轮宽度年表的统计分析

3个标准年表的相关分析发现,XLH和JFJ采样点的树木年轮年表相关值最高,达0.624(p=0.000),有很高的置信水平,可能与坡向相近或海拔高度相近有关;其次XLH和DXG采样点的树木年轮年表相关值也较高,达到0.419(p=0.006),同样有很高的置信水平,可能与2个采样点的距离较近或海拔高度差别不大有关;DXG和JFJ采样点的树木年轮年表相关值最低,为0.220(p=0.166)置信水平较低,可能与2个采样点的坡向或海拔高度差别大都有相关。

3个标准年表的主成分分析结果如表2所示,第一主成分的贡献率占60.061%,表明黄柏山地区影响黄山松树木生长的主导因子是一致的;其它的主成分贡献率也都高于10%,说明小生境因子对树木生长也有一定的影响。但从不同主成分的载荷(特征向量)来看,第一主成分数值都是正值且较大,显然大气候环境因素是主导,从XLH-DXG-JFJ表现出依次递减变化,显示出从南到北的纬度差异;第二主分量从DXG的-0.520到XLH的-0.114再到JFJ的0.846,呈现出随着采样点海拔的升高依次增大的规律,表明较高海拔有利于黄山松的生长;第三主成分的载荷表现出的变化规律可能与坡向有关,表2的特征向量显示:南坡采样点DXG的数值最高,北坡采样点的XLH数值最低,显然第三主成分可能与喜阳的黄山松生长在不同坡向有密切的关系。 由此3个采样点的特征向量大致可以看出:生长在黄柏山的黄山松受大的气候环境影响最大同时也显示出了纬度变化特征,其次是海拔因素的影响,坡向因素在本研究中相对较弱。

表2   3个树木年轮宽度年表的主成份分析及特征向量

Table 2   Principal components analyses and eigenvectors from the three standard tree-ring width chronologies

主成分特征值贡献率
(%)
累计贡
献率(%)
特征向量
XLHDXGJFJ
PC11.801860.06160.0610.6620.5950.455
PC20.836327.87587.936-0.114-0.5200.846
PC30.361912.064100.000-0.7400.6130.277

新窗口打开

2.3 树木年轮宽度年表与气候要素的相关

1) 区域树木年轮生长的共同特征。3个采样点黄山松树木年轮宽度年表的第一主成分(PC1)相对来说是代表影响研究区黄山松生长的区域主导因子,因此代表区域特征的PC1与采样点较近的麻城气象站的月平均最高气温、月平均最低气温、月平均气温和月降水量之间的相关分析结果如图4所示,黄山松与3个温度要素之间的相关值变化基本一致且几乎都是负值,黄山松与前一年9、10和12月份的气温呈显著负相关,前一年10月份的最高负相关可能是由于黄山松在此时已处于生长季的末端,雨季也已结束,高温导致呼吸作用的加强而消耗大量的营养物质,使营养物质积累减少形成窄轮;与当年的5~7月份气温呈较高的负相关,尤其5月高温、7月的高温和低温和9月低温都呈显著负相关,表明处于北亚热带边缘的黄山松的生长受温度的限制。与前一年8月和当年8月的降水都呈显著的负相关,尤其前一年8月最高,这是因为8月正是雨季,土壤含水丰富,多余的降水反而会限制树木的生长;与前一年11月和当年4月的降水呈显著正相关,11月为生长季末期丰富的降水有利于树木的休眠和次年树木的萌发,4月是树木生长季的开始时期,雨季还未来临,丰富的降水会促进树木的生长,形成宽轮。

图4   黄山松树木年轮宽度年表的第一主分量与气象要素的相关分析
p5代表前一年5月,以此类推;水平虚线代表置信水平95%;竖虚线代表前一年与当年的分界

Fig. 4   Correlation coefficients between PC1 of three tree-ring width chronologies from Huangshan pine and climatic factorsin Macheng meteorological station

2) 不同采样点黄山松树木年轮宽度年表与气象要素的相关。本研究的3个黄山松采样点的树木年轮宽度年表虽然表现出了一定的共性,但由于各自的纬度、海拔高度和坡向的差异,与气候因素的相关显示出了很大的不同。由表3相关结果可以看出,同样黄山松树木年轮宽度年表与温度的相关表现出很大的共性,与前一年的10月温度都呈显著的负相关,不同的是小林海(XLH)与前一年9月温度显著负相关、大峡谷(DXG)与前一年12月和当年7月温度显著负相关,而九峰尖(JFJ)与当年1月温度显著正相关,这可能是因为生长季末期较高温度使黄山松的呼吸作用加强,从而分解储存的有机物而使树木形成窄轮,处于南坡的大峡谷7月高温会使蒸发加速导致树木生理上的缺水而限制其生长,九峰尖(JFJ)1月正处于寒冬,较高温度使处于休眠状态的树木体内的水分保持良好循环,有利于树木春季的萌发形成宽轮。

表3   3个树木年轮宽度年表与麻城气温和降水量的相关(1959~2011年)

Table 3   Correlation coefficients between 3 tree-ring width chronologies from Huangshan pine and temperature and precipitation in Macheng meteorological station in 1959-2011

月份(月)与温度相关值与降水量相关值
XLHDXGJFJXLHDXGJFJ
P5-0.068940.079744-0.06088-0.13581-0.058230.013258
P6-0.040890.082503-0.30560.0415860.1247720.153983
P70.05613-0.061590.063085-0.04646-0.09729-0.12785
P8-0.068070.065462-0.03477-0.07654-0.2831*-0.3176*
P9-0.3631*-0.19378-0.136680.2399*0.1201740.128625
P10-0.3608*-0.3585*-0.3251*0.0925860.0984150.111472
P110.0580460.0586080.011890.27408*0.1624580.139355
P12-0.14388-0.3858*-0.03946-0.191280.113802-0.07796
10.0809190.0813380.34538*-0.040430.0355770.060779
2-0.084870.0506250.1385340.1017230.28678*0.035205
3-0.121170.0659470.073991-0.03278-0.004110.064563
4-0.17821-0.002390.0632470.1918860.33474*0.130483
5-0.20664-0.12835-0.230970.0382560.2252270.166927
6-0.1113-0.09012-0.07484-0.028130.056660.097177
7-0.18601-0.3136*0.028550.085650.290969-0.12507
8-0.2301-0.11475-0.01927-0.00730.068461-0.31927
9-0.21781-0.217060.1079590.211145-0.11889-0.11285
10-0.15242-0.05205-0.154320.2066380.0756160.03977

注:P5~P12指前年5~12月;1~12为当年1~12月;*为置信水平在95%以上。

新窗口打开

海拔高度和坡向是影响气候的主要下垫面要素,往往造成水分的重新分配,形成不同的小气候特征,本研究的3个黄山松采样点树木年轮宽度年表与降水量的相关就表现出这种特征:小林海(XLH)与前一年9和11月降水量呈显著正相关,与当年的9、10月降水量有较高的正相关关系,这表明生长季末的降水有利于小林海采样点的树木生长;大峡谷(DXG)的树木生长与前一年8月的降水量呈显著负相关,与当年2和4月的降水量呈显著正相关,该采样点坡向朝南,相对蒸散发较强尤其是雨季来临之前的春季更是如此,降水能促进树木的萌发与生长,8月处于中国的季风雨季末,过多的降水不利于树木的光合作用相应会抑制树木的生长;九峰尖(JFJ)与前一年和当年的8月降水量都呈显著负相关,这可能一方面与8月处于中国的季风雨季末有关,另一方面与8月季风雨带也已开始南撤,九峰尖坡向西北正处于迎风坡,采样点高度在海拔1 000 m左右正处于山地的最大降水量带上[43],因此丰富的降水会抑制树木的正常生长。

2.4 年表间第一主分量与环境因子关系的模拟

由于3个采样点的水平距离不大,虽受不同坡向和不同海拔高度的影响,树木生长存在一定的差异,但共性因子影响很大,所以本研究尝试利用多元回归模型[44]来描述年表间第一主分量与影响显著的气温和降水量间的关系。前面的研究结果已告知,本研究区的黄山松树木年轮宽度指数(第一主分量I)与前一年的9、10月平均温度呈显著负相关(分别为-0.304 6和-0.577 4),与前一年8月降水显著负相关(-0.428 8),与前一年9、11月和当年4月降水呈显著正相关(分别为0.225 3、0.271 5和0.291 4),因此使用不同的多元线性回归方法可得到不同的回归方程。

1) 多元回归法,即所选择的自变量全部进入回归模型,建立的树木年轮宽度指数(I1)与相关显著的气候因子的回归方程为:

I1 = 11.783-0.165Tp9-0.455 Tp10-0.004Pp8+0.001 Pp9+0.008 Pp11+0.002 Pc4

式中,Tp9为前一年9月气温、Tp10为前一年10月气温、Pp8为前一年8月降水量、Pp9为前一年9月降水量、Pp11为前一年11月降水量和Pc4为当年4月降水量,方程的方差解释量R2 为46.9%(调整后为37.3%),F 检验值为4.865,ρ=0.001,因此建立的方程可靠有效。

2) 逐步多元回归法,是向前选择法和向后剔除法的结合,首先根据方差分析结果选择符合判据的自变量且对因变量贡献最大的进入回归方程。据此建立2个树木年轮宽度指数与有显著贡献的气候因子的回归方程。

其一: I2 = 11.485-0.645 Tp10

式中,方差解释量R2 为31.1%(调整后为29.3%),F检验值为17.157,ρ=0.000,因此建立的方程可靠有效。本方程,实质上是一元回归方程,为今后的气候重建奠定基础。

其二: I3 = 10.072-0.534Tp10-0.004Pp8

式中,方差解释量R2 为38.2%(调整后为34.9%),F 检验值为11.437,ρ=0.000,因此建立的方程也是可靠有效。

逐步回归分析的结果,使研究区黄山松树木生长的主要限制因子简化为一种(前一年10月气温)或两种(前一年10月气温和前一年8月降水量),为今后该地区的气候重建工作打下基础。

图5   黄山松树木年轮宽度年表第一主分量(I)及不同拟合曲线(I1I2I3

Fig.5   The PC1 curve (I) of three tree-ring width chronologies from Huangshan pine and different fitted curves (I1,I2,I3)

图5是本研究区黄山松树木年轮宽度年表第一主分量及其不同回归方法建立的模拟曲线对比图。由图可知不同的拟合曲线吻合度较高,但也有一些年份偏差较大,如1978~1980年和2008~2010年时段的低生长及1995~1998年时段的高生长可能都是限制因子的变化造成的,1978年的窄轮可能与1977年1月低温(麻城气象记录1977年1月均温0.1℃低于多年均温3.3℃)及1978年干旱有关,2008年的窄轮是2008年1月低温(麻城气象记录2008年1月均温0.8℃同样低于多年均温3.3℃)冷害致使树木年轮生长受到抑制,形成窄轮;同样,1994年10月的均温为17.1℃,低于多年10月平均气温17.8℃,而8月的降水量为93 mm,低于112 mm,此二条件是显著的负相关,10月的低温和8月的降水储量不足等不仅限制了光合作用而且也大大降低呼吸作用,使光合作用的产物更多地累积下来有利于次年树木的萌发和生长,这种滞后作用促使1995年树木年轮的高生长。

3 结 论

在大别山西部地区,选择信阳市黄柏山林区的3个黄山松树木年轮采样点建立3个标准年表,利用不同的研究方法得出如下一些结论:

1) 3个标准年表的特征值和公共区间的统计特征值都表明黄山松树木年轮宽度中含有较高的环境信息,较高的一阶自相关系数都表明树木年轮宽度的前期影响较大。

2) 年表间关系密切,主成分分析的结果反映第一主分量是主导因素:气候因子,但南北 差异明显,第二、三主分量表明高海拔和阳坡都有利于黄山松的生长。

3) 树木年轮指数与气象因子的相关分析结果显示:① 第一主分量与月均温、月均最高温和月均最低温的相关值表现出很好的一致性,几乎都是负相关;与降水量的关系较为复杂。② 各采样点树木年轮指数与气象因子的关系比较复杂,与月均温呈显著负相关的月份相似;与降水量呈显著相关的月份差异较大。

4) 第一主分量与影响显著的气象因子之间的多元线性回归分析发现:影响树木生长的显著因子是复杂的,多因子能更好地解释树木的生长变化,统计模型的解释量也更好;但逐步回归的结果呈现出主导因子在树木生长过程中的分量,与相关分析结果一致。不同要素的模拟结果有很好的一致性,模拟度较差的时间段可能是气象因子变化下的树木生长差异。

致 谢:感谢河南省信阳市黄柏山林场领导和职工的支持,感谢河南大学环境与规划学院的王飞和王智罡同学参与采样。

The authors have declared that no competing interests exist.


参考文献

[40] Grissino-Mayer H D,Holmes R L,Fritts H C.

The international tree-ring data bank program library,user’s manual(Version 2)

[M].International tree-ring data bank,Tucson,Ariz.,1996.

[本文引用: 1]     

[41] Biondi F.

Are climate-tree growth relationships changing in north-central Idaho?

[J].Arctic,Antarctic,and Alpine Research,2000,32(2):111-116

URL      [本文引用: 1]     

[42] 卢纹岱. SPSS for Windows统计分析(第三版)[M].北京:电子工业出版社,2009.

[本文引用: 1]     

[43] 陈海波,范玉兰,李树岩,.

大别山北坡农业气候资源垂直分布特征及其利用

[J].气象与环境科学,2009,32(2): 37~40.

https://doi.org/10.3969/j.issn.1673-7148.2009.02.009      URL      [本文引用: 1]      摘要

利用设在河南大别山区北坡海拔分别为300、500、800、 1000 m的基本气候考察站1983年4月-1986年4月的逐日气候与自然物候观测资料,分析了气温、降水、日照等要素的年际、月际变化特征及该区域的农业气候 资源垂直分布特征.根据分析结果,豫南大别山北坡400 m以下光热水农业气候条件配合较好,可作为农作经作层;400-800 m雨量充沛,可作为林业层;800 m以上为保护性开发层.
[1] 邵雪梅.

树木年轮年代学的若干进展

[J].第四纪研究,1997,17(3):265~271.

Magsci      [本文引用: 1]      摘要

<p>树轮年代学是一门研究树木木质部年生长层,以及利用年生长层来定年的科学。由于树轮不仅是一种定年工具,它本身还可提供树轮生成时的环境要素信息,为一种环境变化的代用资料。在全球变化特别是在过去全球气候变化研究中,树轮年代学受到愈来愈广泛的重视,在近期内取得了长足的、惊人的进展。本文仅在树轮长年表的建立,树轮年代学生物基础研究──模式研究,利用树轮对环境要素变化的研究,以及树轮的图像分析等几个与环境变化研究相关的方面和本学科目前研究热点的若干进展,予以概要的论述。</p>
[2] 勾晓华,邓洋,陈发虎,.

黄河上游过去1234年流量的树木年轮重建与变化特征分析

[J].科学通报,2010,55(33):3236~3243.

Magsci      [本文引用: 2]      摘要

<p>利用青海省阿尼玛卿山地区祁连圆柏树轮宽度年表资料, 分析树木生长与黄河上游唐乃亥水文站平均流量的关系, 结果表明前一年8月到当年7月的平均流量与当年轮宽密切相关, 相关系数为0.656, 在此相关关系的基础上, 重建了黄河上游过去1234年以来的流量变化. 经11年滑动平均后曲线, 定义流量低于均值1个标准差的时段为枯水期, 流量高于均值1个标准差的时段为丰水期. 在重建的黄河上游过去1234年流量变化中存在18个丰水期和12个枯水期, 丰水期主要分布时段为: 846~873年、1375~1400年, 枯水期主要分布时段为: 1140~1156年、1295~1309年、1473~1500年、1820~1847年. 其中15世纪末是过去1234年以来黄河上游流量最低的时段, 该时期青藏高原东北部发生了大范围的干旱现象. 重建的流量变化包含较多的低频信息, 枯水期与都兰、乌兰、德令哈等地树轮资料和其他代用指标记录的干旱期一致. 多窗谱分析表明黄河流量变化存在2~5年, 22年, 35~38年, 55~62年和114~227年左右的周期, 其中最显著的是159和36年的周期.</p>
[3] Zhang Q B,Cheng G T,Yao T D,et al.

A 2326-year tree-ring record of climate variability on the northeastern Qinghai-Tibetan plateau

[J].Geophysical Research Letters,2003,30(14):1739-1741.

[4] 邵雪梅,方修琦,刘洪滨,.

柴达木东缘山地千年祁连圆柏年轮定年分析

[J].地理学报,2003,58(1):90~100.

https://doi.org/10.3321/j.issn:0375-5444.2003.01.011      URL      Magsci      [本文引用: 1]      摘要

针对中国干旱区生长的树木缺失轮和伪轮多等具体情况,及常规树轮定年方法应用于中国干旱地区时所遇到的问题,本文以柴达木盆地东缘山地上生长的千年祁连圆柏树轮定年工作为例,详细探讨了在中国干旱地区建立树轮定年年表的方法体系及技术路线,对常规的工作方法提出新的改进。这包括:采样中要采集不同树龄、不同小生境且大复本量的样本;交叉定年工作要按一定的工作程序;安放缺失轮时要同时考虑窄轮和宽轮变化的一致性;用多种方法对定年和轮宽量测值进行检验等。这些方法的具体应用有助于在中国干旱地区建立定年准确、千年尺度的树轮年表。
[5] Shao X M,Xua Y,Yin Z Y,et al.

Climatic implications of a 3585-year tree-ring width chronology from the northeastern Qinghai-Tibetan Plateau

[J].Quaternary Science Reviews,2010,29(17-18):2111-2122

[6] Liu Y,An Z S,Linderholm H W,et al.

Annual temperatures during the last 2485 years in the mid-eastern Tibetan Plateau inferred from tree rings

[J].Science in China Series D:Earth Sciences,2009a,52(3):348-359.

https://doi.org/10.1007/s11430-009-0025-z      URL      摘要

By combining living trees and archaeological wood, the annual mean temperatures were reconstructed based on ring-width indices of the mid-eastern Tibetan Plateau for the past 2485 years. The climate variations revealed by the reconstruction indicate that there were four periods to have average tem- peratures similar to or even higher than that mean of 1970 to 2000 AD. A particularly notable rapid shift from cold to warm, we call it the "Eastern Jin Event", occurred from 348 AD to 413 AD. Calculation re- sults show that the temperature variations over the mid-eastern Tibetan Plateau are not only repre- sentative for large parts of north-central China, but also closely correspond to those of the entire Northern Hemisphere over long time scales. During the last 2485 years, the downfall of most major dynasties in China coincides with intervals of low temperature. Compared with the temperature records in other regions of China during the last 1000 years, this reconstruction from the Tibetan Plateau shows a significant warming trend after the 1950s.
[7] Liu Y,Cai Q F,Song H M,et al.

Amplitudes, rates, periodicities and causes of temperature variations in the past 2485 years and future trends over the central-eastern Tibetan Plateau

[J].Chinese Science Bulletin,2011,56(28-29):2986-2994.

https://doi.org/10.1007/s11434-011-4713-7      URL     

[8] 勾晓华,陈发虎,杨梅学,.

青藏高原东北部树木年轮记录揭示的最高、最低温的非对称变化

[J].中国科学(D),2007,37(11):1480~1492.

https://doi.org/10.3321/j.issn:1006-9267.2007.11.007      URL      摘要

江河源区自然环境严酷,生态系 统脆弱.近年来由于该区域日趋严重的生态环境问题使之逐渐成为全社会所广泛关注的焦点地区.根据采自青藏高原东北部黄河源区西顷山和阿尼玛卿山的祁连园柏 树轮样芯,重建了研究区过去近425a来冬半年的最低温和近700a来夏半年最高温.1578~1940年的近400a间研究区冬半年最低温度的波动较为 平缓,但是自1941年来以来有急剧的升温趋势.夏半年最高温在20世纪末表现出明显的升温趋势.近425a来最高温和最低温的变化存在非对称现象.最高 温和最低温在近425a来的变化非常相似,但最低温的变化比最高温的变化超前大约25a左右.如果在未来30a内最高温和最低温的变化保持过去近425a 来的相关趋势,那么在未来30a内,最高温也将继续剧烈升温.
[9] Yang B,Kang X C,Bräuning A,et al.

A 622-year regional temperature history of southeast Tibet derived from tree rings

[J].The Holocene,2010a,20(2):181-190.

https://doi.org/10.1177/0959683609350388      URL      [本文引用: 1]      摘要

tree ring-width record spanning from AD 1377-1998 was developed from Tibetan juniper (Cupressus gigantea) growing at sites north of the deep gorge of the Yarlung Tsangbo River of southeast Tibet. A linear regression model between ring width and mean January-June temperature accounts for 35% of January-June temperature variance for the period 1961-1998. Based on this model, we reconstructed January-June temperature variation history for the study region during the past 622 years. Warm conditions occurred during AD 1385-1418, 1443-1466, 1482-1501, 1523-1548, 1570s, 1705-1759, 1770-1790, 1851-1888, 1910s, and 1938-1965, and periods of relatively cold years are identified forAD 1419-1442, 1470s, 1502-1522, 1550-1569, 1610-1640, 1680-1700, 1760s, 1791-1850, 1900s and 1965-1995. Spatial correlation between tree rings and observed temperatures indicates that the reconstruction is representative of temperature change for southeast Tibet. Regional cold conditions during AD 1625, 1685, 1760, 1800-1850, 1890-1930 and 1965-1995, and warm conditions during 1710, 1730-1750, 1850-1890 and 1930-1960 can be identified in the eastern Tibetan Plateau. Our reconstruction shows good agreement with modelled regional temperatures derived from an ECHO-G model simulation. Common cold periods around 1470, 1685 and 1845 corresponding to the Sp脙露rer Minimum, the Maunder Minimum and the Dalton Minimum periods of low solar activity and increased volcanic activity were identified, indicating that solar and volcanic activity played an important role in temperature change of this region. The discrepancy between modelled and reconstructed temperatures was noted around 1965, reflecting that temperature decrease in the late 20th century (1965-1995) is anomalous.
[10] Yang B,Qin C,Huang K,et al.

Spatial and temporal patterns of variations in tree growth over the northeastern Tibetan Plateau during the period 1450-2006

[J].The Holocene, 2010b, 20(8):1235-1245.

https://doi.org/10.1177/0959683610371997      URL      [本文引用: 1]      摘要

We analyzed spatial and temporal growth variations of Qilian Junipers over the northeastern Tibetan Plateau (TP) during the period 1450-2001 by applying the empirical orthogonal function (EOF) technique to seven moisture-sensitive tree ring-width chronologies. The first three principal components together explain 78.21% of the total variance. The first principal component (PC1) accounts for 51....
[11] Fang K Y,Gou X H,Chen F H,et al.

Reconstructed droughts for the southeastern Tibetan Plateau over the past 568 years and its linkages to the Pacific and Atlantic Ocean climate variability

[J].Climate Dynamics,2010,35(4):577-585.

https://doi.org/10.1007/s00382-009-0636-2      Magsci      [本文引用: 1]      摘要

We present a Palmer Drought Severity Index reconstruction (<i>r</i>&nbsp;=&nbsp;0.61, <i>P</i>&nbsp;&lt;&nbsp;0.01) from 1440 to 2007 for the southeastern Tibetan Plateau, based on tree rings of the forest fir (<i>Abies forrestii</i>). Persistent decadal dry intervals were found in the 1440s&#8211;1460s, 1560s&#8211;1580s, 1700s, 1770s, 1810s, 1860s and 1980s, and the extreme wet epochs were the 1480s&#8211;1490s, 1510s&#8211;1520s, 1590s, 1610s&#8211;1630s, 1720s&#8211;1730s, 1800s, 1830s, 1870s, 1930s, 1950s and after the 1990s. Comparisons of our record with those identified in other moisture related reconstructions for nearby regions showed that our reconstructed droughts were relatively consistent with those found in other regions of Indochina, suggesting similar drought regimes. Spectral peaks of 2.3&#8211;5.5&nbsp;years may be indicative of ENSO activity, as also suggested by negative correlations with SSTs in the eastern equatorial and southeastern Pacific Ocean. Significant multidecadal spectral peaks of 29.2&#8211;40.9 and 56.8&#8211;60.2&nbsp;years were identified. As indicated by the spatial correlation patterns, the decadal-scale variability may be linked to SST variations in the northern Pacific and Atlantic Oceans.
[12] Liu Y,Sun B,Song H M,et al.

Tree-ring-based precipitation reconstruction for Mt. Xinglong, China, since A D 1679

[J]. Quaternary International,2013,283(14): 46-54.

https://doi.org/10.1016/j.quaint.2012.03.045      URL      [本文引用: 1]      摘要

Not Available
[13] Yuan Y J,Jin L Y,Shao X M,et al.

Variations of the spring precipitation day numbers reconstructed from tree rings in the Urumqi River drainage,Tianshan Mts. over the last 370 years

[J].Chinese Science Bulletin,2003,48(14):1507-1510.

https://doi.org/10.1360/02wd0251      URL      摘要

The tree-ring cores of Tianshan spruces col lected from nine sites in the Urumqi River drainage of the middle Tianshan Mountains were used to establish three types of the tree-ring width chronologies over the last 370 years, using the international standard method of dendrochronology. Our study demonstrates that dendrochronology can be better used to reconstruct the number of the precipitation day than to reconstruct the precipitation amount in middle Tianshan Mountains. It is found that the residual chronology among the three tree-ring width chronologies has the best relationship with number of spring precipitation days from May 20 to June 8. The chronologies at Haxionggou B site and Zaierdegou site in the Urumiqi drainage have the highest correlation with the observed number of spring precipitation days at Daxigou meteorological station, and are used to reconstruct the spring precipitation days over the last 370 years in the drainage. The main significant decreasing trend of the number of the spring precipitation days occurred during 1665–1717, while the significant increasing trends happened during 1805–1841 and 1914–1943. The reconstructed series of the number of spring precipitation days has quasi-periodic variations of 3.3, 2.1, 2.5, 12.3 and 32.0 years with the dominated short periodical changes. The long cycle of 32 years is shown quite clearly in the 10-year smoothed sequence. The maximum spring precipitation days occurred mainly in the 1630s, 1840s and 1940s, while the lowest number of spring precipitation days for the 10-year average occurred in the 1710s.
[14] 张同文,王丽丽,袁玉江,.

利用树轮宽度资料重建天山中段南坡巴仑台地区过去645年来的降水变化

[J].地理科学,2011,31(2):251~256.

URL      摘要

巴仑台位于天山中段南坡的沟谷 地带,是开展气候变化研究的敏感区之一。20世纪70年代起至今,一些学者在天山开展了大量的树轮研究。但目前在天山中段南坡仅开展了树轮宽度年表特征及 其气候响应的研究,而过去气候长序列的重建研究尚未开展。本文以巴仑台地区为研究区域,针对当前气候变化研究的需求,利用该地区的树轮宽度资料,重建这一 地区气候长序列并分析其变化特点。本研究的开展将有助于深入理解巴仑台地区气候变化规律及其在全球变暖背景下的区域响应。同时,本研究对新疆地区树轮资料 库的完善也有重要意义。在分析树木生长对气候要素响应的基础上,利用采自天山中段南坡夫斯坦沟的雪岭云杉树轮宽度年表,重建了巴仑台地区 1360~2004AD当年7月至次年6月的降水量序列,方差解释量达53%(调整自由度后为52%)。交叉检验结果表明重建方程稳定可信。过去645a 以来,巴仑台地区降水量大体经历了12个偏少阶段(1370?~1396AD、1442~1469AD、1501~1539AD、 1565~1586AD、1619~1652AD、1679~1688AD、1707~1728AD、1755~1788AD、1811~1836AD、 1863~1886AD、1907~1918AD、1940~1987AD)和12个偏多阶段(1397~1441AD、1470~1500AD、 1540~1564AD、1587~1618AD、1653~1678AD、1689~1706AD、1729~1754AD、1789~1810AD、 1837~1862AD、1887~1906AD、1919~1939AD、1988~1994?AD)。降水量最少阶段出现在1442~1469年,比 降水量重建序列平均值偏低4.7%;降水量最多阶段出现在1837~1862AD,比降水量重建序列平均值偏高6.2%。最长偏少阶段为 1940~1987AD,持续年数为48a;最长偏多阶段为1397~1441AD,持续年数为45a。周期分析结果表明,巴仑台地区降水量重建序列存在 10.7~11、6.7和2.1a的显著准周期及16.5~17.2和2.4~6.6a的较显著准周期。其中,10.7~11a的显著准周期与太阳黑子活 动周期以及袁林所发现的西北干旱灾害的11a准周期相符;6.7a的显著准周期和2.4~6.6a的较显著准周期可能与ENSO的变化有关;2.1a显著 准周期则与气象学上的"准两年震荡"(QBO)相一致。以上结果表明,巴仑台地区降水量不仅含有局部的区域气候信号,同时也受到全球大尺度气候变化的影 响。突变检验结果表明,巴仑台地区降水量重建序列在1496AD前后发生了由少向多的突变。这与邵雪梅等发现15世纪后期是柴达木盆地东北部最干旱且干旱 持续时间最长的时期,而该地区降水量在接下来的16世纪初开始显著增加并在16世纪后期达到近1437a来最高水平的研究结果吻合。
[15] 陈峰,袁玉江,魏文寿,.

腾格里沙漠南缘近315年5~6月PDSI指数变化

[J].地理科学,2011,31(4):434~439.

URL      摘要

利用昌灵山早材宽度年表重建腾格里沙漠南缘在过去315a的5~6月份PDSI指数变化,重建方程的方差解释量达42.0%。腾格里沙漠南缘5~6月的PDSI指数重建序列平均值为-0.32。腾格里沙漠南缘5~6月的PDSI指数重建序列对西北地区干旱极端历史事件有良好的响应。空间分析显示腾格里沙漠南缘5~6月的PDSI指数重建序列与亚洲季风尾闾区PDSI指数的变化比较一致,同时还与西北地区的多条PDSI指数重建序列有着良好的相关性。腾格里沙漠南缘5~6月的PDSI指数重建序列具有25a(95%)、12a(95%)、3.4a(99%)、2.8a(99%)、2.6a(99%)、2.3a(95%)的周期变化。
[16] 侯迎,王乃昂,张学敏,.

1880年以来石羊河出山径流量重建与变化特征

[J].地理科学,2011,31(11):1396~1402.

URL      Magsci      [本文引用: 1]      摘要

在石羊河上游山区采集流域树木年轮样芯,建立高分辨率宽度年表。分析年表、降水和径流量间的相关关系,在它们间良好相关性基础上,分别利用多元逐步回归和提取主分量再回归方法重建金塔河和西营河历史时期上年9月至当年8月年径流量序列,以逐一剔除和交叉检验验证回归方程的稳定性和可靠性。1880年以来,石羊河年径流量共经历了4个枯水阶段和3个丰水阶段,而枯水年与丰水年出现的概率大致相同,且远低于平水年出现的概率。用多窗谱分析径流量序列周期变化,发现在不同置信水平上,年径流量存在2.58、2.76、3.28、3.53、4.14和22.2 a的周期。
[17] Liu Y,Bao G,Song H M,et al.

Precipitation reconstruction from Hailar pine (Pinus sylvestris var. mongolica) tree rings in the Hailar region,Inner Mongolia,China back to 1865 A D

[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2009b,282(1-4): 81-87.

[本文引用: 1]     

[18] 孙然好,张百平.

地形和气候对中国山地森林带界线的影响

[J].地理科学,2013,33(2):167~173.

URL      Magsci      [本文引用: 1]      摘要

山地森林带界线对地形差异和气候变化敏感,是地学、生态学研究的重要内容。利用13个气候指标进行主成分分析,提取出中国31个自然地带的气候指数,包括夏季温度变异指数(STVI)、冬季温度变异指数(WTVI)和干旱指数(DI),3个气候指数符合地带性分布规律,STVI从南向北递减,WTVI以东部地区和南疆部分地区最高,DI则从东南向西北递增。基于文献发表的中国28个典型山体的森林带界线数据,将其与山体基面高度、山体相对高度和地带性气候指数进行多元回归分析。结果显示,山体基面高度对森林带下线南北坡差异贡献最大(39.67%),山体相对高度对森林带上线南北坡差异贡献最大(39.34%)。3个地带性气候指数的累积贡献对森林带上线南北差异、下线南北差异和带宽南北差异的影响差别不大,在51.4%~55.9%之间,其中STVI贡献最大,其次是WTVI和DI。通过定量揭示地形和气候要素对山地森林带界线差异的贡献,可以为区域或全球尺度的山地森林带界线评价和模拟提供参考。
[19] 彭剑峰,勾晓华,陈发虎,.

坡向对海拔梯度上祁连圆柏树木生长的影响

[J].植物生态学报,2010,34(5):517~525.

https://doi.org/10.3773/j.issn.1005-264x.2010.05.005      Magsci      [本文引用: 3]      摘要

<FONT face=Verdana>选择青海省同德县南部河北林场的一个连续坡面, 根据不同海拔和坡向设置4个采样点, 采集祁连圆柏(<EM>Sabina przewalskii</EM>)树轮数据, 分析不同海拔和坡向对树木生长的影响。结果表明: 坡面上部3个采样点的树轮年表特征值均呈一定的变化规律——平均敏感值(<EM>MS</EM>)和标准差(<EM>SD</EM>)随海拔升高而增大, 一阶自相关(<EM>AC</EM>)随海拔升高而递减, 下限年表特征值均表现出与其他3点的不同, 都是最值(<EM>MS</EM>和<EM>SD</EM>均最大, <EM>AC</EM>最小); 年表间相关和主成分分析结果都显示出海拔梯度上的变化规律,但下限差异显著; 树轮指数与当年6–8月平均气温的相关系数呈增强趋势, 森林上限受当年7、8月平均气温影响较大, 下限树轮指数不仅与当年6月和前一年11月的气温显著负相关, 而且受前一年8月和当年5月的月降水量影响显著。与通常情况“下限树木生长受降水制约”比较, 这里的温度作用增强而降水限制减弱。显然, 坡向扭转是海拔梯度上影响祁连圆柏生长变化的重要因子。</FONT>
[20] 朱海峰,王丽丽,邵雪梅,.

雪岭云杉树木年轮宽度对气候变化的响应

[J].地理学报,2004,59(6):863~870.

Magsci      摘要

<p>利用新疆伊犁地区雪岭云杉的6个树轮宽度年表 ,通过相关分析的方法,分析不同地形条件下雪岭云杉树轮宽度对于气候要素的响应。统计分析表明,雪岭云杉对气候变化比较敏感,在北天山南坡的森林下限,雪岭云杉生长与生长季7~8月降水关系显著;在南天山北坡的森林下限,雪岭云杉生长对生长季前11&mdash;次年1月最低温度存在显著正相关。地形对雪岭云杉与气候要素之间的关系影响较大,在南天山北坡,由于森林上下限树木抗寒性的差异,森林下限树木生长对温度的响应强于上限树木;南北坡引起的降水量水平的差异,使得天山不同坡向的树木生长响应不同的气候要素。</p>
[21] Liang E Y,Shao X M,Eckstein D,et al.

Topography-and species-dependent growth responses of Sabina przewalskii and Picea crassifolia to climate on the northeast Tibetan Plateau

[J].Forest Ecology and Management,2006,236(2-3):268-277.

https://doi.org/10.1016/j.foreco.2006.09.016      URL      摘要

中国科学院机构知识库(中国科学院机构知识库网格(CAS IR GRID))以发展机构知识能力和知识管理能力为目标,快速实现对本机构知识资产的收集、长期保存、合理传播利用,积极建设对知识内容进行捕获、转化、传播、利用和审计的能力,逐步建设包括知识内容分析、关系分析和能力审计在内的知识服务能力,开展综合知识管理。
[22] 郑永宏,梁尔源,朱海峰,.

不同生境祁连圆柏径向生长对气候变化的响应

[J].北京林业大学学报,2008,30(3):7~12.

[23] Leonelli G,Pelfini M,Battipaglia G,et al.

Site-aspect influence on climate sensitivity over time of a high-altitude Pinus cembra tree-ring network.

[J].Climatic Change,2009,96(1):185-201.

https://doi.org/10.1007/s10584-009-9574-6      URL      摘要

Recently a divergence between tree-ring parameters from temperature-limited environments and temperature records has been observed worldwide but comprehensive explanations are still lacking. From a dendroclimatic analysis performed on a high-altitude tree-ring network of (L.) in the Central Italian Alps we found that site aspect influences non-stationary growth-climate relationships over time. A general increasing divergence between ring width and the summer temperature record (J–A) has been observed especially for chronologies from SW-facing slopes, whereas chronologies from N-facing sites showed stable relationships over time. The monthly analysis revealed that the decrease in sensitivity was mostly accounted for by the changes in the relationships with June temperature (decreasing correlations especially for S- and W-facing site chronologies), whereas trees from N-facing sites showed an increasing sensitivity to July temperatures. Our data suggest that at high altitudes, low temperatures at the beginning of the growing season no longer limit growth. We also found that our temperature-sensitive trees did not linearly respond in radial growth to the extreme heat event of summer 2003, and formed an annual ring of average width, resulting in a strong divergence from the temperature record. Our findings underline the importance of site ecology for tree-ring based climate reconstructions using temperature-sensitive ring-width chronologies, and may help in solving the ‘divergence problem’.
[24] Peng J F,Gou X H,Chen F H,et al.

Climate-growth relationships of Qilian juniper Sabina przewalskii in the Anyemaqen Mountains,Tibet.

[J].Climate Research,2010,41(1):31-40.

https://doi.org/10.3354/cr00834      URL      [本文引用: 1]      摘要

Climate-growth relationships were investigated for 5 mountain slopes of the Anyemaqen Mountains on the northeastern Tibetan Plateau, using a tree-ring width network indicating the chronologies of 20 Qilian junipers Sabina przewalskii. Tree growth is mainly controlled by regional climate conditions, which are modulated by altitudinal factors. The tree growth patterns in this region were classifi...
[25] Zhang Q B, Hebda R J.

Variation in radial growth patterns of Pseudotsuga menziesii on the central coast of British Columbia,Canada

[J].Canadian journal of forest research,2004,34(9):1946-1954.

https://doi.org/10.1139/x04-078      URL      [本文引用: 1]      摘要

Radial growth of trees in mountainous areas is subject to conditions associated with changes in elevation. We present ring-width chronologies for Douglas-fir trees ((Mirb.) Franco var. ) at nine sites spanning low to high elevations in the Bella Coola area of the central coast of British Columbia, near the northern limits of the species distribution, and investigate the variation in tree-ring growth patterns in relation to different elevations, using principal component (PC) analysis. We find that the first PC, which represents 55.6% of the total variance, reflects a common growth response at sites of different elevation. Response function analysis indicates that growing season precipitation is the major factor in controlling tree-ring growth. This factor explains more of the variance in low-elevation sites than it does in high-elevation ones. Temperature in August of the preceding year shows a negative relationship to ring-width growth. The second PC represents 16.7% of the total variance and reveals a distinct difference in growth response between low- and high-elevation sites. The length and temperature of the growing season seem to play an important role in tree-ring growth at sites of high elevation. Comparison of the Bella Coola records with those from southern Vancouver Island suggests that growing season precipitation influences growth of Douglas-fir on a macroregional scale, but other factors such as temperature modify the growth response at the limits of the distribution of the species.
[26] Yu D P,Dai L M,Wang G G,et al.

Dendroclimatic response of Picea Jezoensis along an altitudinal gradient in Changbai Mountain,Northeast China

[J].Science in China (Series E),2006,49(Supp l1):150-159.

[27] 彭剑峰,勾晓华,陈发虎,.

阿尼玛卿山地不同海拔青海云杉树轮生长特性及对气候的响应

[J].生态学报, 2007a,27(8): 3268~3276.

[28] 段建平,王丽丽,徐岩,.

贡嘎山东坡不同海拔高度树轮宽度对气候变化的响应

[J].地理研究,2010,29(11):1941~1949.

https://doi.org/10.11821/yj2010110003      URL      摘要

树木生长对气候变化的响应机制是气候重建的基础,在不同的气候或环境背景下,树轮宽度对气候 变化的响应不同,其响应随着地形或海拔等因素的变化而变化。利用采自贡嘎山东坡5个海拔高度的树轮样本建立了树轮宽度年表,并对年表特征、年轮宽度及其对 气候要素的响应进行分析,探讨了该区树木径向生长对气候变化的响应关系。结果表明:年轮平均宽度具有随海拔高度的增加而减小的趋势,树轮宽度对气候要素的 响应也具有海拔差异。在海拔3700m的森林上限树轮宽度与当年7月份平均温度显著正相关,在海拔3000m高度与3月份平均温度显著正相关,而在海拔 2800m树轮宽度与气候因子之间没有显著的响应关系。通过与海螺沟冰川末端进退变化和文献记载的特殊气候年份对比发现,树轮宽度年表与海螺沟冰川进退变 化及文献记录的特殊气候年份具有一定的一致性,宽度年表对气候变化具有一定的指示意义。
[29] Liang E,Wang Y,Xu Y,et al.

Growth variation in Abies georgei var. smithii along altitudinal gradients in the Sygera Mountains,southeastern Tibetan Plateau

[J].Trees,2010,24(2):363-373.

https://doi.org/10.1007/s00468-009-0406-0      Magsci      摘要

A network of nine Smith fir (<i>Abies georgei</i> var. <i>smithii</i>) ring-width chronologies was constructed from sites ranging in elevation from 3,550 to 4,390&nbsp;m above sea level (a.s.l.) in the Sygera Mountains, southeastern Tibetan Plateau. High-elevation trees had lower growth rates than did low-elevation trees. The mean tree-ring series intercorrelation (RBAR) increased with elevation. Principal component analysis identified three elevation zones (around 3,600, 3,800, and &gt;4,200&nbsp;m a.s.l.) with distinctive tree-ring growth patterns. Five chronologies with elevation &gt;4,200&nbsp;m a.s.l. were highly correlated. Overall, the initiation of tree-ring growth in Smith fir is controlled by common climatic signals, such as July minimum temperature, across a broad altitudinal range. Precipitation was not a growth-limiting factor across stands. Regardless of differences in stand elevation, topographical aspect, and tree age, the radial growth of Smith fir trees was markedly similar in response to common climatic signals, perhaps as a result of the relatively high-elevation of these forests (above 3,550&nbsp;m a.s.l.) and the abundant summer monsoon rainfall. In addition, radial tree growth along the altitudinal gradients was indicative of a recent warming trend on the southeastern Tibetan Plateau.
[30] Shi J,Li J,Cook E R,et al.

Growth response of Pinus tabulaeformis to climate along an elevation gradient in the eastern Qinling Mountains, central China

[J]. Climate Research, 2012,53(2):157-167.

https://doi.org/10.3354/cr01098      URL      [本文引用: 1]      摘要

中国科学院机构知识库(中国科学院机构知识库网格(CAS IR GRID))以发展机构知识能力和知识管理能力为目标,快速实现对本机构知识资产的收集、长期保存、合理传播利用,积极建设对知识内容进行捕获、转化、传播、利用和审计的能力,逐步建设包括知识内容分析、关系分析和能力审计在内的知识服务能力,开展综合知识管理。
[31] 彭剑峰,勾晓华,陈发虎,.

阿尼玛卿山地祁连圆柏径向生长对气候的响应

[J].地理学报,2007b,62(7):742~752.

https://doi.org/10.3321/j.issn:0375-5444.2007.07.007      URL      [本文引用: 1]      摘要

通过对阿尼玛卿山地5个坡面 20个祁连圆柏树轮宽度标准年表的分析,发现公共区间内各树木年轮宽度标准年表中的信噪比SNR和样本总解释量EPS值都较高,说明年表中都含有较强的环 境信息;树轮宽度年表之间的平均相关为0.35(大多达到95%的置信程度),具有较好的区域一致性。聚类分析使树木年轮宽度年表分成东、西两大部分,而 年表的第一主分量显示出:西部树轮的指数序列明显长于东部即树木生长有自西向东扩展的趋势,并且东、西区域树木生长变化的特征年变化具有同步性。东、西树 轮宽度年表中第一主分量和第二主分量与气候因子的相关和响应都表现出一定的相似性,但第二主分量对气候因子响应的差异性更显著。西部树木生长PCI的主要 限制因子是温度,尤其当年春末夏初及前一年秋季温度影响最大,同样降水也起着重要的作用,西部树木生长PC2的主要限制因子是降水量;而东部树木生长 PC1主要受降水的制约,第二主分量PC2的响应分析显示出气候的滞后影响(树木前期生长)是非常重要的限制因子。
[32] Wang X, Zhang Y,

McRae D J. Spatial and age-dependent tree-ring growth responses of Larix gmelinii to climate in northeastern China

[J].Trees,2009,23(4):875-885.

https://doi.org/10.1007/s00468-009-0329-9      URL      Magsci      [本文引用: 1]      摘要

Tree-ring width chronologies from 276 Larix gmelinii cores taken in northeastern China were used to analyze spatial and age-dependent growth-climate response relationships. Tree radial growth from five localities showed similar patterns, while exhibiting different tree-ring growth responses to local climate. The rotated principal component analysis (RPCA) indicated that tree age, growing season moisture conditions, and ambient air temperature variations resulted from location differences (e.g., longitude, latitude, and altitude), which could explain the non-stationary spatial climate-growth relations observed. The study tested the fundamental assumption that the climate-growth of L. gmelinii was age independent after the removal of size trends and disturbance signals. The age-related climate-growth relationship might potentially improve the veracity of past climate reconstructions. Bootstrapped correlation function analyses suggested that the response of L. gmelinii radial growth to climate differed between trees >=150 years old and <150 years old. Mean sensitivity and standard deviation for trees increased with age in the <150 years old tree class; whereas trees >=150 years old had no significant relationship with age. These results showed that the assumption of age-independent climate-growth relationship is invalid at these sites. Physiological processes and/or hydraulic constraints dependent on tree age, together with detrending techniques could be the possible causal factors of clear age-dependent responses. These results suggested the importance of incorporating trees of all ages into the chronology to recover a detailed climatic signal in a reconstruction of L. gmelinii for this region.
[33] 郑永宏,张永,邵雪梅,.

大别山地区黄山松和油松树木年轮宽度的气候意义

[J].地理科学进展,2012,31(1):72~77.

https://doi.org/10.11820/dlkxjz.2012.01.010      URL      [本文引用: 1]      摘要

本文基于2010年采自大别山地区黄山松、油松树轮资料分别建立了树轮宽度标准年表,利用相关函数检验了年表与附近的麻城气象站1959-2009年月平均最高气温、月平均气温、月平均最低气温和月降水量之间关系,旨在探讨黄山松、油松树轮宽度的气候意义。研究结果显示,平均敏感度、标准差、信噪比等统计量黄山松年表均高于油松年表,表明黄山松年表较油松年表包含更多的气候信息,具有更高的树轮气候学研究价值。黄山松径向生长主要受当年2-7月平均气温限制,任何月份及月份组合降水量对黄山松径向生长的限制作用均不显著;油松径向生长主要受当年5-6月降水总量限制,任何月份及月份组合气温对油松径向生长的限制作用均不显著。研究表明,在中国亚热带暖湿地区,气候要素的年际变化亦可对部分树种径向生长具有较强的限制作用,树木年轮宽度的变化对气候具有指示意义。研究结果将进一步弥补中国亚热带暖湿地区树轮宽度年表的不足,为树轮气候重建研究提供参考和依据。
[34] 吴祥定. 树木年轮与气候变化[M].北京:气象出版社,1990:65~75.

[本文引用: 1]     

[35] Stokes M A,Smiley T L.An Introduction to Tree Ring Dating[M].Chicago:the University of Chicago Press,1968.

[本文引用: 1]     

[36] Holmes R L.

Computer-assisted quality control in tree-ring dating and measurement

[J].Tree-Ring Bulletin,1983,43:69-78.

https://doi.org/10.1006/biol.1999.0214      URL      [本文引用: 1]      摘要

Abstract This study surveyed strategies of sequencing primer selection and evaluated primer performance in automated DNA sequencing. We asked participants to relate their preferred primer design strategies to identify primer characteristics that are considered most important in sequencing primer design. The participants preferred primers of 18-24 nucleotides (nt), 39%-58% G + C, a melting temperature (Tm) of 53 degrees-65 degrees C with a 1-2 nt 3' GC clamp, hairpin stems of less than 2-3 bp, homopolymeric runs of less than 4-5 nt, primer dimers of less than 3-4 bp and secondary priming sites of less than 3-4 bp. We provided a 300-bp test sequence and asked participants to submit sequences of 1-3 optimal sequencing primers. Submitted primers ranged from 17-24 nt and largely conformed to the preferred parameters. Submitted primers were distributed across the test sequence, although some sites were disfavored. Surprisingly, approximately 45% of the primers were selected "manually", more than by any software package. Each of 69 submitted and 95 control primers, distributed at 3-bp intervals across the test sequence, were synthesized, purified and tested using a Model 377 PRISM DNA Sequencer with dichlororhodamine dye terminator reagents (dRhodamine dye terminators). Approximately half of the control primers were also tested using rhodamine dye terminator reagents ("old" rhodamine dye terminators). The results indicated that primer physico-chemical characteristics thought to have a strong impact on sequencing performance had surprisingly little effect. Thus, primers with high or low percent G + C or Tm, strong secondary priming scores or long 3' homopolymeric stretches yielded excellent sequences with the dRhodamine dye terminator reagents, although these characteristics had a stronger effect when the old rhodamine reagents were used. The old rhodamine reagents gave sequences with a similar average read length, but the number of errors and ambiguities or "N's" was consistently higher. Moreover, the effects of the primer physico-chemical characteristics were also more evident with the old rhodamine dyes. We conclude that under optimal sequencing conditions with highly pure template and primer, many of the commonly applied primer design parameters are dispensable, particularly when using one of the new generation of sequencing reagents such as the dichlororhodamine dye terminators.
[37] Cook E R,Holmes R L.

Users manual for ARSTAN

[M].Laboratory of Tree-ring Research:University of Arizona,Tucson,1986.

[本文引用: 1]     

[38] 徐建华. 现代地理学中的数学方法[M].北京:高等教育出版社,2002:84~93.

[本文引用: 1]     

[44] Rolland C.

Tree-ring and climate relationships for Abies alba in internal Alps

[J].Tree-Ring Bulletin,1993,53:1-11.

URL      [本文引用: 1]      摘要

The relationships between the tree-rings of the white fir (Abies alba Mill.) and climate in the French internal Alps are indicated by correlation functions. This fir shows an accurate response to climate as well as long term persistence for at least six years (MS =0.18, R1 =0.65, and R6= 0.27). Its growth is strongly influenced by the previous year's climate, especially by prior August rainfall, which enhances ring size, or by high temperatures, which show the opposite effect. The most critical period extends from prior July to prior September. This species responds positively to warm temperature from current January to April, followed by rainfall in May and June, which leads to a longer growth period. A favorable water balance seems to be decisive. Abies alba can be affected by frost and seems to prefer a low thermal amplitude as demonstrated by the analysis of the extreme temperature data. Moreover, even a few days of excessive heat can reduce its growth.
[39] Legendre P,Legendre L.

Numerical ecology

[M].Amsterdam:Elsevier Science B.V.,1998.

[本文引用: 1]     

/