[1] |
WMO (word meteorological organization),Scientific assessment of ozone depletion:2002, Global Ozone Research and Monitoring Project-report No.47[R]. Geneva,2003:98.
|
[2] |
Leisinger T.Biodegradation of chlorinated aliphatic compounds[J].Current Opinion in Biotechnology,1996,7: 295-300.
|
[3] |
Atsushi O, Yoko Y.Dichloromethane in the Indian ocean: Evidence for in-situ production in seawater[J].Marine Chemistry,2011,doi:10.1016/j.marchem.2011.01.001.
|
[4] |
杨桂朋,张亮,陆小兰,等.黄海海水微表层和次表层中挥发性卤代烃的浓度和分布[J].中国海洋大学学报,2009,39(5):1077~1086.
|
[5] |
杨斌,陆小兰,杨桂朋,等.北黄海海水中挥发性卤代烃的分布和海—气通量研究[J].海洋学报, 32(1):47~56.
|
[6] |
Rhew R C, Miller B R, Weiss R F.Natural methyl bromide and methyl chloride emissions from coastal salt marshes[J].Nature,2000,403:293-295.
|
[7] |
Wang J X, Li R J, Guo Y Y, et al.The flux of methyl chloride along an elevational gradient of a coastal saltmarsh,eastern China[J].Atmospheric Environment,2006,40:6592-6605.
|
[8] |
Wang J X, Li R J, Guo Y Y, et al.Removal of methyl chloroform in a coastal salt marsh of eastern China[J].Chemosphere,2006,65:1371-1380.
|
[9] |
Wang J X, Qin P, Sun S C.The flux of chloroform and tetrachloromethane along an elevational gradient of a coastal salt marsh, East China[J].Environ.Pollut.,2007,148:10-20.
|
[10] |
王进欣. 苏北海岸带盐沼二氯甲烷和1,2-二氯乙烷通量沿高程梯度的变化特征[J].生态学报,2009,29(8):4026~4034.
|
[11] |
宋长春. 湿地生态系统碳循环研究进展[J].地理科学,2003,23(5):622~628.
|
[12] |
丁维新,蔡祖聪.沼泽甲烷排放及其主要影响因素[J].地理科学,2002,22(5):619~626.
|
[13] |
于兴修,杨桂山,王瑶.土地利用/覆被变化的环境效应研究进展与动向[J].地理科学,2004,24(5):627~633.
|
[14] |
王金达,刘景双,于君宝.沼生植物过渡金属元素含量季节变化特征——以三江平原典型湿地植物为例[J].地理科学,2003,23(2):213~217.
|
[15] |
欧维新,杨桂山,李恒鹏,等.苏北盐城海岸带景观格局时空变化及驱动力分析[J].地理科学,2004,24(5):610~615.
|
[16] |
高建华,杨桂山,欧维新.苏北潮滩湿地植被对沉积物N、P含量的影响[J].地理科学, 2006,26(2):224~230.
|
[17] |
王进欣,孙书存,王今殊,等.苏北盐沼DMS,CS2 和CH4排放通量沿高程梯度的变化[J].地理科学,2009,29(4):535~540.
|
[18] |
Myneni S C B. Formation of stable chlorinated hydrocarbons in weathering plant material[J]. Science, 2002, 295:1039-1041.
|
[19] |
Harper D B.The global chloromethane cycle: biosynthesis, biodegradation, and metabolic role[J].Nature Product Reports,2000,17:337-348.
|
[20] |
Wuosmaa A M, Hager L P.Methyl chloride transferase:a carbocation route for biosynthesis of halometabolites[J].Science,1990,249:160-162.
|
[21] |
Saini H S, Attieliol J M, Hansonm A D.Biosynthesis of halomethanes and methanethiol by higher plant via a novel methylthransferase reaction[J].Plant Cell and Environment,1995.18:1027-1033.
|
[22] |
Watling R, Harper D B.Chloromethane production by wood-rooting fungi and an estimate of the global flux to the atmosphere[J].Mycholrizae Research,1998,102:769-787.
|
[23] |
Hoekstra E J, Duyzer J H, de Leer E W B, et al. Chloroform-concentration gradients in soil air and atmospheric air, and emission fluxes from soil[J].Atmospheric Environment,2001,35:61-70.
|
[24] |
Khalil M A K, Rasmussen R A. Emissions of trace gases from Chinese rice fields and biogas generators,CH4,N2O,CO,CO2,chlorocarbons,and hydrocarbons[J].Chemosphere,1990,20:207-226.
|
[25] |
Moore R M, Groszko W, Niven S J.Ocean-atmosphere exchange of methyl chloride:Results from NW Atlantic and Pacific Ocean studies[J].Journal of Geophysics Research,1996,101:28529-28538.
|
[26] |
Khalil M A K, Rasmussen R A. Atmospheric methyl chloride[J].Atmospheric Environment,1999,33:1305-1321.
|
[27] |
Yokouchi Y, Ikeda M,Inuzuka Y, Yukawa T.Strong emission of methyl chloride from tropical plants[J].Nature,2002,416:163-165.
|
[28] |
Keene W C, Khalil M A K, Erickson III D J, et al. Composite global emissions of reactive chlorine from anthropogenic and natural sources, reactive chlorine emissions inventory[J],Journal of Geophysical Research,1999,104D:8429-8440.
|
[29] |
Palmer P P, Jacob D J, Mickley L J, et al.Eastern Asian emissions of anthropogenic halocarbons deduced from aircraft concentration data[J].Journal of Geophysics Research,2003,108(D24):4753,doi,10.1029/2003JD003591.
|
[30] |
Aucott M L, McCulloch A, Graedel T E, et al.Anthropogenic emissions of trichloromethane (chloroform,CHCl3) and chlorodifluoromethane (HCFC-22):Reactive chlorine emissions inventory[J],Journal of Geophysics Research,1999,104:8405-8415.
|
[31] |
Field J A, Sierra-Alvarez R.Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds[J].Reviews in Environmental Science and Biotechnology,2004,3(3):185-254.
|
[32] |
McAnulla C, Mcdonald I N, Murrell J C. Methyl chloride utilizing bacteria are ubiquitous in the natural environment[J].FEMS Microbiology Letters,2001,201:151-155.
|
[33] |
Miller L G, Warner K L, Baesman S M, et al.Degradation of methyl bromide and methyl chloride in soil microcosms Use of stable C isotope fractionation and stable isotope probing to identify reactions and the responsible microorganisms[J]. Geochimica et Casmochimica Acta,2004,68(15):3271-3283.
|
[34] |
Coulter C, Hamilton, J T G., McRoberts W C, et al. Halomethane, bisulfide/halide ion methyltransferase, an unusual corrinoid enzyme of environmental significance isolated from an aerobic methylotroph using chloromethane as the sole carbon source[J].Applied and Environmental Microbiology,1999,65:4301-4312.
|
[35] |
Doronina, N.V, Sokolov, A P, Trotsenko Y A. Isolation and initial characterization of aerobic methyl chloride-utilizing bacteia[J]. FEMS Microbiology Letters, 1996, 142:179-183.
|
[36] |
Alvarez-Cohen L, Speitel Jr G E.Kinetics of aerobic cometabolism of chlorinated solvents[J].Biodegradation,2001,12:105-126.
|
[37] |
Fetzner S.Bacterial dehalogenation[J].Applied Microbiology and Biotechnology,1998,50:633-657.
|