地理科学 ›› 2017, Vol. 37 ›› Issue (6): 912-919.doi: 10.13249/j.cnki.sgs.2017.06.013
收稿日期:
2016-06-12
修回日期:
2016-11-10
出版日期:
2017-06-20
发布日期:
2017-06-20
作者简介:
作者简介:李净(1978-),女,甘肃白银市会宁人,博士,主要研究方向为定量遥感与辐射模拟。E-mail:
基金资助:
Jing Li(), Dan Wang, Jiaojiao Feng
Received:
2016-06-12
Revised:
2016-11-10
Online:
2017-06-20
Published:
2017-06-20
Supported by:
摘要:
现有的神经网络模拟太阳辐射的模型很少考虑云、气溶胶、水汽对太阳辐射的影响,采用MODIS提供的气溶胶、云、水汽高空大气遥感产品和常规气象数据,输入LM(Levenberg-Marquardt)算法优化后的BP(Back-Propagation)神经网络模型(简称LM-BP)模拟了和田、西宁、固原、延安4个辐射站点的太阳辐射月均值。验证结果表明:神经网络模型中加入气溶胶、云、水汽之后,4个辐射站点的
中图分类号:
李净, 王丹, 冯姣姣. 基于MODIS遥感产品和神经网络模拟太阳辐射[J]. 地理科学, 2017, 37(6): 912-919.
Jing Li, Dan Wang, Jiaojiao Feng. Simulation of Solar Radiation Based on Neural Network and MODIS Remote Sensing Products[J]. SCIENTIA GEOGRAPHICA SINICA, 2017, 37(6): 912-919.
表1
Pearson相关系数"
Rp | S(MJ/m2) | P(hPa) | T(℃) | Pw(hPa) | Hr(%) | S0(h) | H0(MJ/m2) |
---|---|---|---|---|---|---|---|
S(MJ/m2) | 1.00 | -0.11 | 0.80 | 0.48 | -0.40 | 0.63 | 0.20 |
P(hPa) | -0.11 | 1.00 | 0.17 | 0.12 | -0.14 | 0.06 | -0.02 |
T1(℃) | 0.80 | 0.17 | 1.00 | 0.83 | -0.07 | 0.42 | 0.14 |
Pw(hPa) | 0.48 | 0.12 | 0.83 | 1.00 | 0.43 | 0.11 | 0.06 |
Hr(%) | -0.40 | -0.14 | -0.07 | 0.43 | 1.00 | -0.53 | -0.11 |
S0(h) | 0.63 | 0.06 | 0.42 | 0.11 | -0.53 | 1.00 | 0.01 |
H0(MJ/m2) | 0.20 | -0.02 | 0.14 | 0.06 | 0.11 | 0.01 | 1.00 |
表3
LM-BP神经网络模型具体结构"
站点 | 输入层 | 隐含层 | 输出层 | 误差限 | 训练函数 | 训练误差 | 迭代次数 | 实际迭代次数 |
---|---|---|---|---|---|---|---|---|
和田 | P、T1、Hr、S0 | 10 | S | 0.005 | trainlm | 0.0048 | 2000 | 102 |
P、T1、Hr、S0、CF、COT、AOT、PWV | 10 | S | 0.005 | trainlm | 0.0031 | 2000 | 106 | |
西宁 | P、T1、Hr、S0 | 10 | S | 0.005 | trainlm | 0.0044 | 2000 | 127 |
P、T1、Hr、S0、CF、COT、AOT、PWV | 10 | S | 0.005 | trainlm | 0.0029 | 2000 | 126 | |
固原 | P、T1、Hr、S0 | 10 | S | 0.005 | trainlm | 0.0036 | 2000 | 118 |
P、T1、Hr、S0、CF、COT、AOT、PWV | 10 | S | 0.005 | trainlm | 0.0032 | 2000 | 125 | |
延安 | P、T1、Hr、S0 | 10 | S | 0.005 | trainlm | 0.0050 | 2000 | 156 |
P、T1、Hr、S0、CF、COT、AOT、PWV | 10 | S | 0.005 | trainlm | 0.0045 | 2000 | 180 |
表4
误差指标统计表"
辐射站点 | 年份 | MBE(MJ/m2) | MAPE(%) | ||||||
---|---|---|---|---|---|---|---|---|---|
A | A+ | A | A+ | A | A+ | ||||
西宁 | 2010 | 1.14 | 0.74 | 0.42 | 0.23 | 4.53 | 2.81 | ||
2011 | 1.98 | 1.15 | 0.19 | -0.27 | 10.64 | 5.94 | |||
2012 | 1.13 | 0.82 | 0.8 | 0.44 | 5.81 | 4.42 | |||
2013 | 1.08 | 1.04 | 0.55 | 0.47 | 5.17 | 5.09 | |||
和田 | 2010 | 1.51 | 1.37 | -0.17 | 0.41 | 7 | 5.96 | ||
2011 | 1.47 | 1.29 | 0.17 | 0.36 | 6.3 | 5.52 | |||
2012 | 1.43 | 1.04 | 0.72 | 0.28 | 6.06 | 4.39 | |||
2013 | 0.87 | 0.77 | 0.02 | -0.11 | 3.69 | 0.3 | |||
固原 | 2010 | 1.3 | 0.78 | -0.05 | -0.2 | 6.77 | 3.92 | ||
2011 | 1.21 | 1.04 | -0.82 | -0.27 | 6.71 | 5.74 | |||
2012 | 1.68 | 1.3 | 1.17 | 0.21 | 8.27 | 7.31 | |||
2013 | 1.15 | 1.07 | 0.13 | -0.2 | 6.52 | 5.44 | |||
延安 | 2010 | 1.74 | 1.17 | -1.41 | -0.79 | 11.64 | 6.61 | ||
2011 | 1.15 | 0.59 | -0.88 | -0.24 | 6.54 | 3.47 | |||
2012 | 1.43 | 0.93 | -0.88 | -0.21 | 7.07 | 5.12 | |||
2013 | 2.34 | 1.69 | 1.15 | 0.42 | 15.89 | 9.62 |
[1] |
Lu Ning, Qin Jun, Yang Kun et al. A simple and efficient algorithm to estimate daily global solar radiation from geostationary satellite data[J]. Energy, 2011, 36(5): 3179-3188.
doi: 10.1016/j.energy.2011.03.007 |
[2] | 施国萍, 邱新法, 曾燕. 中国三种太阳辐射起始数据分布式模拟[J]. 地理科学, 2013, 33(4): 385-392. |
[Shi Guoping, Qiu Xinfa, Zeng Yan.Distributed Modeling of Three Kinds of Initial Data for Global Solar Radiation Simulation in China. Scientia Geographica Sinica, 2013, 33(4): 385-392.] | |
[3] | 查良松. 我国地面太阳辐射量的时空变化研究[J]. 地理科学,1996, 16(3): 41-46. |
[Zha Liangsong.A Study on Spatial andTemporal Variation of Solar Radiation in China. Scientia Geographica Sinica, 1996, 16(3): 41-46.] | |
[4] |
赵东, 罗勇, 高歌, 等. 我国近50年来太阳直接辐射资源基本特征及其变化[J]. 太阳能学报, 2009, 30(7): 946-952.
doi: 10.3321/j.issn:0254-0096.2009.07.018 |
[Zhao Dong, Luo Yong, Gao Ge et al.The basic characteristics and change of direct solar radiation resource in recent 50 years in China. Acta Energiae Solaris Sinica, 2009, 30(7): 946-952.]
doi: 10.3321/j.issn:0254-0096.2009.07.018 |
|
[5] |
曾燕, 邱新法, 刘昌明, 等. 起伏地形下黄河流域太阳直接辐射分布式模拟[J]. 地理学报, 2005, 60(4): 680-688.
doi: 10.3321/j.issn:0375-5444.2005.04.017 |
[Zeng Yan, Qiu Xinfa, Liu Changming et al. Distributed Model of Direct solar radiation of rugged terrain over Yellow River Basin. Acta Geographica Sinica, 2005, 60(4): 680-688.]
doi: 10.3321/j.issn:0375-5444.2005.04.017 |
|
[6] |
Chen Jilong, Xiao Beibei, Chen Chundi et al. Estimation of monthly-mean global solar radiation using MODIS atmospheric product over China[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2014, 110: 63-80.
doi: 10.1016/j.jastp.2014.01.017 |
[7] |
Sun Huaiwei, Zhao Na, Zeng Xiaofa et al. Study of solar radiation prediction and modeling of relationships between solar radiation and meteorological variables[J]. Energy Conversion and Management,2015, 105: 880-890.
doi: 10.1016/j.enconman.2015.08.045 |
[8] |
Teke A, Yıldırım H B, Çelik Ö.Evaluation and performance comparison of different models for the estimation of solar radiation[J]. Renewable and Sustainable Energy Reviews, 2015, 50: 1097-1107.
doi: 10.1016/j.rser.2015.05.049 |
[9] |
Wu Ji, Chan Chee keong, Zhang Yu et al. Prediction of solar radiation with genetic approach combing multi-model framework[J]. Renewable Energy, 2014, 66: 132-139.
doi: 10.1016/j.renene.2013.11.064 |
[10] |
Yao Wanxiang, Li Zhengrong, XiuTongbin et al. New decomposition models to estimate hourly global solar radiation from the daily value[J]. Solar Energy, 2015, 120: 87-99.
doi: 10.1016/j.solener.2015.05.038 |
[11] |
Manzano A, Martín M L, Valero F et al. A single method to estimate the daily global solar radiation from monthly data[J]. Atmospheric Research, 2015, 166: 70-82.
doi: 10.1016/j.atmosres.2015.06.017 |
[12] | 和清华,谢云. 我国太阳总辐射气候学计算方法研究[J]. 自然资源学报,2010,25(2):308-319. |
[He Qinghua, Xie Yun.Research on the Climatological Calculation Method of Solar Radiation in China. Journal of Natural Resources, 2010, 25(2): 308-319.] | |
[13] |
Shamim M A, Remesan R, Bray M et al. An improved technique for global solar radiation estimation using numerical weather prediction[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 129: 13-22.
doi: 10.1016/j.jastp.2015.03.011 |
[14] | 周开利, 康耀红. 神经网络模型及其MATLAB 仿真程序设计[M]. 北京: 清华大学出版社, 2005. |
[Zhou Kaili, Kang Yaohong.Neural Network Model and MATLAB programming. Beijing: Tsinghua University Press, 2005.] | |
[15] |
Lam J C, Wan K K W, Yang L. Solar radiation modelling using ANNs for different climates in China[J]. Energy Conversion and Management, 2008, 49(5): 1080-1090.
doi: 10.1016/j.enconman.2007.09.021 |
[16] |
Wan K K W, Tang H L, Yang Let al. An analysis of thermal and solar zone radiation models using an Angstrom-Prescott equation and artificial neural networks[J]. Energy, 2008, 33(7): 1115-1127.
doi: 10.1016/j.energy.2008.01.015 |
[17] |
Ozgoren M, Bilgili M, Sahin B.Estimation of global solar radiation using ANN over Turkey[J]. Expert Systems with Applications, 2012, 39(5): 5043-5051.
doi: 10.1016/j.eswa.2011.11.036 |
[18] |
Şenkal O.Modeling of solar radiation using remote sensing and artificial neural network in Turkey[J]. Energy, 2010, 35(12): 4795-4801.
doi: 10.1016/j.energy.2010.09.009 |
[19] |
曹双华, 曹家枞, 刘凤强. 小波分析在太阳辐射神经网络预测中的应用研究[J]. 东华大学学报: 自然科学版, 2004, 30(6): 18-22.
doi: 10.3969/j.issn.1671-0444.2004.06.005 |
[Cao Shuanghua, CaoJiacong, Liu Fengqiang. Study of Application of Wavelet Analysis to Neural Networks for the Forecast of Solar Irradiance. Journal of Donghua University (Natural Science), 2004, 30(6):18-22.]
doi: 10.3969/j.issn.1671-0444.2004.06.005 |
|
[20] | 李净, 王卫东, 张福存. 利用LM-BP神经网络估算西北地区太阳辐射[J]. 干旱区地理, 2015, 38(3): 438-445. |
[Li Jing, Wang Weidong,Zhang Fucun.Simulation of solar radiation in northwest China based on LM-BP neural network. Arid Land Geography. 2015, 38(3): 438-445.] | |
[21] | 李净, 冯姣姣, 王卫东, 等. 基于LM-BP神经网络的西北地区太阳辐射时空变化研究[J]. 地理科学, 2016, 36(5): 780-786. |
[Li Jing, Feng Jiaojiao, Wang Weidong et al. Spatial and Temporal Changes in Solar Radiation of Northwest China Based LM-BP Neural Network. Scientia Geographica Sinica, 2016, 36(5): 780-786.] | |
[22] |
王卫东, 李净, 张福存, 等. 基于BP神经网络的太阳辐射预测——以兰州市为例[J]. 干旱区资源与环境, 2014, 28(2): 185-189.
doi: 10.3969/j.issn.1003-7578.2014.02.032 |
[ Wang Weidong, Li Jing, Zhang Fucun et al. Simulation of solar radiation in Lanzhou based on BP neural network. Journal of Arid Land Resource and Environment, 2014, 28(2): 185-189.]
doi: 10.3969/j.issn.1003-7578.2014.02.032 |
|
[23] | 高隽. 人工神经网络原理及仿真实例[M]. 北京: 机械工业出版社, 2003. |
[Gao Jun.Artificial neural network theory and simulation examples. Beijing: Machinery Industry Press, 2003.] | |
[24] |
苏安玉, 李衡, 濮励杰, 等. 基于RAGA-BP神经网络模型的三江平原地下水资源预测研究[J]. 地理科学, 2009, 29(2): 283-287.
doi: 10.3969/j.issn.1000-0690.2009.02.023 |
[Su Anyu, Li Heng, Pu Lijie et al. Evaluation of Ground water Resources Based on RAGA-BP Neural Networks in the Sanjiang Plain. Scientia Geographica Sinica, 2009, 29(2): 283-287]
doi: 10.3969/j.issn.1000-0690.2009.02.023 |
|
[25] | 赵玲玲, 翁苏明, 曾华军, 等. 模式分析的核方法[M]. 北京: 机械工业出版社, 2006. |
[Zhao Lingling, Weng Suming, Zeng Huajun et al. Kernel methods for pattern analysis. Beijing: China Machine Press, 2006.] | |
[26] | 宋宇辰, 甄莎. BP神经网络和时间序列模型在包头市空气质量预测中的应用[J]. 干旱区资源与环境, 2013, 27(7): 65-70. |
[Song Yuchen, Zhen Sha.The application of BP neural network and time series model to air quality forecast for Baotou. Journal of Arid Land Resource and Environment,2013, 27(7): 65-70.] | |
[27] | 王海军, 蒲晓勇, 杨志彪, 等. 影响人工站与自动站水汽压差值原因探究[J]. 气象科技, 2012, 40(1): 25-30. |
[Wang Haijun, Pu Xiaoyong, Yang Zhibiao et al. Causal study of differences in water vapor pressure measurements between manual and automatic weather stations. Meteorological Science and Technology, 2012, 40(1): 25-30.] | |
[28] |
汪凯, 叶红, 陈峰, 等. 中国东南部太阳辐射变化特征、影响因素及其对区域气候的影响[J]. 生态环境学报, 2010, 19(5): 1119-1124.
doi: 10.3969/j.issn.1674-5906.2010.05.023 |
[Wang Kai, Ye Hong, Chen Feng et al. Long-term change of solar radiation in southeastern China: Variation, factors,and climate forcing. Ecology and Environmental Sciences, 2010, 19(5): 1119-1124.]
doi: 10.3969/j.issn.1674-5906.2010.05.023 |
|
[29] |
López G, Batlles F J.Estimating solar radiation from MODIS data[J]. Energy Procedia, 2014, 49: 2362-2369.
doi: 10.1016/j.egypro.2014.03.250 |
[30] | 尹青, 张华, 何金海. 近 48 年华东地区地面太阳总辐射变化特征和影响因子分析[J]. 大气与环境光学学报, 2011, 6(1): 37-46. |
[Yin Qing, Zhang Hua, He Jinhai.Long-term change of surface total solar radiation and influencing factors over east China in recent 48 years. Journal of Atmospheric and Environmental Optics,2011, 6(1): 37-46.] |
[1] | 陈晓红, 娄金男, 王颖. 哈长城市群城市韧性的时空格局演变及动态模拟研究[J]. 地理科学, 2020, 40(12): 2000-2009. |
[2] | 张静, 吴洁, 秦公伟, 冯俊霄, 郑博, 赵文博. 秦巴山区地表太阳辐射的时空动态及农业气候区划研究[J]. 地理科学, 2020, 40(10): 1742-1752. |
[3] | 顾吉林, 汤宏山, 刘淼, 耿杨, 于月, 陶涛. 大连市大气污染物质量浓度与气溶胶光学厚度的相关性分析[J]. 地理科学, 2019, 39(3): 516-523. |
[4] | 刘希林,郭梨花. 泥石流易发区灾害可接受程度对比研究——以云南东川和甘肃舟曲为例[J]. 地理科学, 2019, 39(1): 164-172. |
[5] | 唐志鹏, 邹嘉龄, 孙威. 云南省出口东盟的特征及其经济和就业贡献率分析[J]. 地理科学, 2018, 38(2): 242-248. |
[6] | 孟祥锐, 张树清, 臧淑英. 基于卷积神经网络和高分辨率影像的湿地群落遥感分类——以洪河湿地为例[J]. 地理科学, 2018, 38(11): 1914-1923. |
[7] | 戢晓峰, 姜莉, 陈方. 云南省县域城镇化与交通优势度的时空协同性演化分析[J]. 地理科学, 2017, 37(12): 1875-1884. |
[8] | 郑祚芳, 任国玉, 王耀庭, 窦军霞. 大型人工湖气候效应观测研究——以密云水库为例[J]. 地理科学, 2017, 37(12): 1933-1941. |
[9] | 李净, 冯姣姣, 王卫东, 张福存. 基于LM-BP神经网络的西北地区太阳辐射时空变化研究[J]. 地理科学, 2016, 36(5): 780-786. |
[10] | 陈利, 朱喜钢, 李小虎. 基于产业结构视角的云南省县域经济差异研究[J]. 地理科学, 2016, 36(3): 384-392. |
[11] | 单卫东, 胡月明, 贺灿飞, 曹小曙, 黄贤金, 童昕, 吴常艳. 土地规划的自然过程基础与大数据时代的方法探索[J]. 地理科学, 2016, 36(12): 1912-1919. |
[12] | 王发曾, 邱磊. 城市绿色开放空间系统功能认知研究——以连云港市区为例[J]. 地理科学, 2015, 35(5): 583-592. |
[13] | 黄一民, 章新平, 孙葭, 黄一斌, 魏乃琼. 长沙大气水汽、降水中稳定同位素季节变化及与水汽输送关系[J]. 地理科学, 2015, 35(4): 498-506. |
[14] | 王朋岭, 王启祎, 王东阡, 周兵. 2012年4月华南地区降水异常事件及成因诊断分析[J]. 地理科学, 2015, 35(3): 352-357. |
[15] | 马新萍, 白红英, 贺映娜, 秦进. 基于NDVI的秦岭山地植被遥感物候及其与气温的响应关系——以陕西境内为例[J]. 地理科学, 2015, 35(12): 1616-1621. |
|