地理科学 ›› 2018, Vol. 38 ›› Issue (3): 448-456.doi: 10.13249/j.cnki.sgs.2018.03.015
收稿日期:
2017-02-28
修回日期:
2017-06-15
出版日期:
2018-03-21
发布日期:
2018-03-21
作者简介:
作者简介:尹剑(1984-),男,黑龙江哈尔滨人,副教授,博士,主要从事水文水资源工程研究。E-mail:
基金资助:
Jian Yin(), Zhaofan Ou, Qiang Fu(
), Dong Liu, Zhenxiang Xing
Received:
2017-02-28
Revised:
2017-06-15
Online:
2018-03-21
Published:
2018-03-21
Supported by:
摘要:
遥感技术近年来在估算区域尺度蒸散发中应用广泛。不同方法在驱动数据、模型机理和适用范围往往存在很大差别。鉴于此,阐述了基于传统方法空间尺度扩展的遥感模型,经验统计公式,特征空间法,单源、双源垂向能量平衡余项法等几类的遥感蒸散发反演方法,简要介绍了三温模型、非参数化模型、半经验模型、集成模型等常用模型。同时,分析了遥感数据同化实现连续估算区域蒸散发的主要思路,综述了基于能量平衡和基于复杂过程模型的数据同化的原理、方法演进及常用同化算法等。最后,探讨了各类区域蒸散发遥感方法的优劣、展望了模型机理完善、不确定性研究、结果验证等与蒸散发直接反演和数据同化相关的研究方向。
中图分类号:
尹剑, 欧照凡, 付强, 刘东, 邢贞相. 区域尺度蒸散发遥感估算——反演与数据同化研究进展[J]. 地理科学, 2018, 38(3): 448-456.
Jian Yin, Zhaofan Ou, Qiang Fu, Dong Liu, Zhenxiang Xing. Review of Current Methodologies for Regional Evapotranspiration Estimation:Inversion and Data Assimilation[J]. SCIENTIA GEOGRAPHICA SINICA, 2018, 38(3): 448-456.
[45] |
Abdolghafoorian A, Farhadi L, Bateni S M et al. Characterizing the effect of vegetation dynamics on the bulk heat transfer coefficient to Improve Variational Estimation of Surface Turbulent Fluxes[J]. Journal of Hydrometeorology, 2017,18(2):321-333.
doi: 10.1175/JHM-D-16-0097.1 |
[46] |
Bateni S M, Liang S.Estimating surface energy fluxes using a dual-source data assimilation approach adjoined to the heat diffusion equation[J]. Journal of Geophysical Research, 2012, 117:D17118.
doi: 10.1029/2012JD017618 |
[47] |
Xu T, Bateni S M, Liang S et al. Estimation of surface turbulent heat fluxes via variational assimilation of sequences of land surface temperatures from Geostationary Operational Environmental Satellites[J]. Journal of Geophysical Research Atmospheres, 2015, 119(18):10780-10798.
doi: 10.1002/2014JD021814 |
[48] |
Xu T, Bateni S M, Margulis S A et al. Partitioning evapotranspiration into soil evaporation and canopy transpiration via a two-source variational data assimilation system[J]. Journal of Hydrometeorology, 2016, 17(9):2353-2370.
doi: 10.1175/JHM-D-15-0178.1. |
[49] |
Qin J, Liang S, Liu R et al. A Weak-Constraint-Based Data Assimilation Scheme for Estimating Surface Turbulent Fluxes[J]. IEEE Geoscience & Remote Sensing Letters, 2007, 4(4):649-653.
doi: 10.1109/LGRS.2007.904004 |
[50] |
Bateni S M, Entekhabi D, Castelli F.Mapping evaporation and estimation of surface control of evaporation using remotely sensed land surface temperature from a constellation of satellites[J]. Water Resources Research, 2013, 49(2):950-968.
doi: 10.1002/wrcr.20071 |
[51] |
Xu T, Bateni S M, Liang S.Estimating turbulent heat fluxes with a weak-constraint data assimilation scheme: A case study (HiWATER-MUSOEXE)[J]. IEEE Geoscience & Remote Sensing Letters, 2014, 12(1):68-72.
doi: 10.1109/LGRS.2014.2326180 |
[52] |
Xu T, Liu S, Xu Z et al. A dual-pass data assimilation scheme for estimating surface fluxes with FY3A-VIRR land surface temperature[J]. Science China: Earth Sciences, 2015, 58(2):211-230.
doi: 10.1007/s11430-014-4964-7 |
[53] |
Xu T, Liu S, Liang S et al. Improving predictions of water and heat fluxes by assimilating MODIS land surface temperature products into the common land model[J]. Journal of Hydrometeorology, 2011, 12:227-244.
doi: 10.1175/2010JHM1300.1 |
[54] |
Lei F, Huang C, Shen H et al. Improving the estimation of hydrological states in the SWAT model via the ensemble Kalman smoother: Synthetic experiments for the Heihe River Basin in northwest China[J]. Advances in Water Resources, 2014, 67(32-45):32-45.
doi: 10.1016/j.advwatres.2014.02.008 |
[55] |
Xie X, Zhang D.Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter[J]. Advances in Water Resources, 2010, 33(6): 678-690.
doi: 10.1016/j.advwatres.2010.03.012 |
[56] |
Pipunic C, Walker P, Western A.Assimilation of remotely sensed data for improved latent and sensible heat flux prediction:A comparative synthetic study[J]. Remote Sensing of Environment, 2008, 112(4):1295-1305.
doi: 10.1016/j.rse.2007.02.038 |
[57] | 赵海贝, 王斌, 戴永久. 基于历史样本投影的四维变分陆面数据同化方法及其初步应用[J]. 气候与环境研究, 2009, 14(4):383-389. |
[Zhao Haibei, Wang Bin, Dai Yongjiu.Historical-Sample-Projection four-dimensional variational land surface data assimilation and its preliminary application. Climatic and Environmental Research, 2009, 14(4):383-389.] | |
[58] |
孟春雷, 张朝林, 刘长友. CoLM 模式地表温度变分同化研究[J]. 大气科学, 2012, 36(5): 985-994.
doi: 10.3878/j.issn.1006-9895.2012.11184 |
[Meng Chunlei, Zhang Chaolin, Liu Changyou.Variational assimilation of land surface temperature from Common Land Model (CoLM). Chinese Journal of Atmospheric Sciences, 2012,36(5): 985-994.]
doi: 10.3878/j.issn.1006-9895.2012.11184 |
|
[1] |
Wang K, Dickinson R E.A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability[J]. Rev. Geophys., 2012, 50(2):93-102.
doi: 10.1029/2011RG000373 |
[2] |
Chen Y, Xia J, Liang S et al. Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China[J]. Remote Sensing of Environment, 2014, 140(1):279-293.
doi: 10.1016/j.rse.2013.08.045 |
[59] |
Pan M, Wood E F, Wójcik R et al. Estimation of regional terrestrial water cycle using multi-sensor remote sensing observations and data assimilation[J]. Remote Sensing of Environment, 2008, 112(4):1282-1294.
doi: 10.1016/j.rse.2007.02.039 |
[60] |
Schuurmans M, Troch A, Veldhuizen A et al. Assimilation of remotely sensed latent heat flux in a distributed hydrological model[J]. Advances in Water Resources, 2003, 26(2):151-159.
doi: 10.1016/S0309-1708(02)00089-1 |
[3] |
Li Z L, Tang R L, Wan Z M et al. A review of current methodologies for regional evapotranspiration estimation from remotely sensed Data[J]. Sensors, 2009, 9(5):3801-3853.
doi: 10.3390/s90503801 pmid: 3297132 |
[4] | Allen R G, Pereira L S, Raes D et al. Crop evapotranspiration: Guide lines for computing crop water requirements: FAO Irrigation and Drainage Paper[M]. Rome: FAO, 1998. |
[61] |
Crow W T, Wood E F, Pan M.Multiobjective calibration of land surface model evapotranspiration predictions using streamflow observations and spaceborane surface radiometric temperature retrievals[J]. Journal of Geophysical Research, 2003, 108(D23):4725.
doi: 10.1029/2002JD003292 |
[62] |
Immerzeel W W, Droogers P.Calibration of a distributed hydrological model based on satellite evapotranspiration[J]. Journal of Hydrology, 2008, 349(3-4):411-424.
doi: 10.1016/j.jhydrol.2007.11.017 |
[5] |
Yuan W, Liu S, Yu G et al. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data[J]. Remote Sensing of Environment, 2010, 114(7):1416-1431.
doi: 10.1016/j.rse.2010.01.022 |
[6] |
Liu S, Sun R, Sun Z et al. Evaluation of three complementary relationship approaches for evapotranspiration over the Yellow River basin[J]. Hydrological Processes, 2006, 20(11):2347-2361.
doi: 10.1002/hyp.6048 |
[63] |
Irmak A, Kamble B.Evapotranspiration data assimilation with genetic algorithms and SWAP model for on-demand irrigation[J]. Irrigation Science, 2009, 28(1):101-112.
doi: 10.1007/s00271-009-0193-9 |
[64] |
Zhang M, Zhang F.E4DVar: Coupling an ensemble kalman filter with four-dimensional variational data assimilation in a limited-area weather prediction model[J]. Monthly Weather Review, 2011, 140(2):587-600.
doi: 10.1175/MWR-D-11-00023.1 |
[7] |
Liu S, Bai J, Jia Z et al. Estimation of evapotranspiration in the Mu Us Sandland of China[J]. Hydrology & Earth System Sciences, 2010, 14(3):5977-6006.
doi: 10.5194/hessd-6-5977-2009 |
[8] |
Priestley C, Taylor R J.On the assessment of surface heat flux and evaporation using large-scale parameters[J]. Monthly Weather Review, 1972, 100(2):81-92.
doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2 |
[65] |
Bai J, Jia L, Liu S et al. Characterizing the Footprint of Eddy Covariance System and Large Aperture Scintillometer Measurements to Validate Satellite-Based Surface Fluxes[J]. IEEE Geoscience & Remote Sensing Letters, 2015, 12(5):943-947.
doi: 10.1109/LGRS.2014.2368580 |
[66] |
Liu S, Xu Z, Song Let al. Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces[J]. Agricultural & Forest Meteorology, 2016, 230-231:97-113.
doi: 10.1016/j.agrformet.2016.04.008 |
[9] |
Miralles D G, Holmes T R H, Jeu R A M D et al. Global land-surface evaporation estimated from satellite-based observations[J]. Hydrology & Earth System Sciences, 2011, 15(2):453-469.
doi: 10.5194/hess-15-453-2011 |
[10] |
Barton I J.A parameterization of the evaporation from nonsaturated surfaces[J]. Journal of Applied Meteorology, 1979, 18:43-47.
doi: 10.1175/1520-0450(1979)0182.0.CO;2 |
[11] |
Tang R L, Li Z L, Tang B H.An application of the Ts-VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions:implementation and validation[J]. Remote Sensing of Environment, 2010, 114(3):540-551.
doi: 10.1016/j.rse.2009.10.012 |
[12] |
Fisher J B, Tu K P, Baldocchi D D.Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 Fluxnet sites[J]. Remote Sensing of Environment, 2008, 112(3):901-919.
doi: 10.1016/j.rse.2007.06.025 |
[13] |
Yao Y, Liang S, Zhao S et al. Validation and Application of the Modified Satellite-Based Priestley-Taylor Algorithm for Mapping?Terrestrial Evapotranspiration[J]. Remote Sensing, 2014, 6(1):880-904.
doi: 10.3390/rs6010880 |
[14] |
Seguin B, Itier B.Using midday surface temperature to estimate daily evaporation from satellite thermal IR data[J]. International Journal of Remote Sensing, 1983, 4:371-383.
doi: 10.1080/01431168308948554 |
[15] |
Wang K, Liang S.An improved method for estimating global evapotranspiration based on satellite determination of surface net radiation, vegetation index, temperature, and soil moisture[J]. Journal of Hydrometeorology, 2008, 9(4): 712-727.
doi: 10.1109/IGARSS.2008.4779489 |
[16] |
Yao Y, Qin Q, Fadhil A M et al. Evaluation of EDI derived from the exponential evapotranspiration model for monitoring China’s surface drought[J]. Environmental Earth Sciences, 2011, 63(2):425-436.
doi: 10.1007/s12665-011-0972-5 |
[17] |
Price J C.Using spatial context in satellite data to infer regional scale evapotranspiration[J]. IEEE Transactions on Geo-science and Remote Sensing, 1990, 28:940-948.
doi: 10.1109/36.58983 |
[18] |
Jiang L, Islam S.An inter comparison of regional land heat flux estimation using remote sensing data[J]. International Journal of Remote Sensing, 2003, 24(11):2221-2236.
doi: 10.1080/01431160210154821 |
[19] |
Roerink G J, Su Z, Menenti M.S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance[J]. Physical and Chemistry Earth (B), 2000, 25(2):145-157.
doi: 10.1016/S1464-1909(99)00128-8 |
[20] |
Bastiaanssen W G M, Noordman E J M, Pelgrum Het al. SEBAL model with remotely sensed data to improve water-resources management under actual field conditions[J]. Journal of Irrigation and Drainage Engineering, 2007, 133(4):380-394.
doi: 10.1061/(ASCE)0733-9437(2007)133:4(380) |
[21] | Allen R G, Tasumi M, Trezza R.Satellite-Based Energy Balance for Mapping Evapotranspiration With Internalized Calibration (METRIC) -Model[J]. Journal of Irrigation & Drainage Engineering, 2007, 133(4):395-406. |
[22] |
Lian J, Huang M.Comparison of three remote sensing based models to estimate evapotranspiration in an oasis-desert region[J]. Agricultural Water Management, 2016, 165:153-162.
doi: 10.1016/j.agwat.2015.12.001 |
[23] |
Su Z.The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes[J]. Hydrology and Earth System Sciences, 2002, 6(1):85-89.
doi: 10.5194/hess-6-85-2002 |
[24] |
Ma Y, Liu S, Zhang F et al. Estimations of regional surface energy fluxes over heterogeneous oasis-Desert surfaces in the middle reaches of the Heihe River during HiWATER-MUSOEXE[J]. IEEE Geoscience & Remote Sensing Letters, 2015,12(3): 671-675.
doi: 10.1109/LGRS.2014.2356652 |
[25] |
Norman J M, Kustas W P, Humes K S.Source approach for estimating soil and vegetation energy fluxes in observations of disectional radiometric surface temperature[J]. Agricultural and Forest Meteorology, 1995, 77(3-4):263-293.
doi: 10.1016/0168-1923(95)02265-Y |
[26] |
Colaizzi P D, Agam N, Tolk J A et al. Two-source energy balance model to calculate E, T, and ET: comparison of Priestley-Taylor and Penman-Monteith formulations and two time scaling methods[J]. Transactions of the Asabe, 2014, 57(2):479-498.
doi: 10.13031/trans.57.10423 |
[27] |
Song L, Kustas W P, Liu S et al. Applications of a thermal-based two-source energy balance model using priestley-taylor approach for surface temperature partitioning under advective conditions[J]. Journal of Hydrology, 2016, 540:574-587.
doi: 10.1016/j.jhydrol.2016.06.034 |
[28] |
Song L, Liu S, Kustas W Pet al. Application of remote sensing-based two-source energy balance model for mapping field surface fluxes with composite and component surface temperatures[J]. Agricultural & Forest Meteorology, 2016, 230-231:8-19.
doi: 10.1016/j.agrformet.2016.01.005 |
[29] |
Zhang R, Tian J, Su H et al. Two improvements of an operational Two-Layer Model for terrestrial surface heat flux retrieval[J]. Sensors, 2008, 8(10):6165-6187.
doi: 10.3390/s8106165 pmid: 3707444 |
[30] |
Long D, Singh V P.A Two-source Trapezoid Model for Evapotranspiration (TTME) from satellite imagery[J]. Remote Sensing of Environment, 2012, 121(2):370-388.
doi: 10.1016/j.rse.2012.02.015 |
[31] |
Yan C, Qiu G.The three-temperature model to estimate evapotranspiration and its partitioning at multiple scales: A review[J]. Transactions of the Asabe, 2016, 59(2):661-670.
doi: 10.13031/trans.59.11087 |
[32] |
Liu Y, Mu X, Wang H et al. A novel method for extracting green fractional vegetation cover from digital images[J]. Journal of Vegetation Science, 2012, 23(3):406-418.
doi: 10.1111/j.1654-1103.2011.01373.x |
[33] |
Wang K, Dickinson R E, Wild M et al. Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002: 2. Results[J]. Journal of Geophysical Research Atmospheres, 2010, 115:D20113.
doi: 10.1029/2010JD013847 |
[34] |
Yao Y, Liang S, Li X et al. Bayesian multimodel estimation of global terrestrial latent heat flux from eddy covariance, meteorological, and satellite observations[J]. Journal of Geophysical Research Atmospheres, 2014, 119(8):4521-4545.
doi: 10.1002/2013JD020864 |
[35] |
王宁, 贾立, 李占胜, 等. 非参数化蒸散发估算方法在黑河流域的适用性分析[J]. 高原气象, 2016, 35(1):118-128.
doi: 10.7522/j.issn.1000-0534.2014.00124 |
[Wang Ning, Jia Li, Li Zhansheng et al. Applicability analysis of nonparametric evapotranspiration approach over Heihe River Basin. Plateau Meteorology, 2016, 35(1):118-128.]
doi: 10.7522/j.issn.1000-0534.2014.00124 |
|
[36] |
Pan X, Liu Y, Gan G et al. Estimation of evapotranspiration using a nonparametric approach under all sky: Accuracy evaluation and error analysis[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017, 10(6):1-12.
doi: 10.1109/JSTARS.2017.2707586 |
[37] |
Cammalleri C, Ciraolo G.State and parameter update in a coupled energy/hydrologic balance model using ensemble Kalman filtering[J]. Journal of Hydrology, 2012, 416-417(2):171-181.
doi: 10.1016/j.jhydrol.2011.11.049 |
[38] |
Sun L, Seidou O, Nistor I et al. Review of the Kalman type hydrological data assimilation[J]. Hydrological Sciences Journal, 2016, 61(13), 2348-2366.
doi: 10.1080/02626667.2015.1127376 |
[39] |
Castelli F, Entekhabi D, Caporali E.Estimation of surface heat flux and an index of soil moisture using adjoint-state surface energy balance[J]. Water Resources Research, 1999, 35(35):3115-3125.
doi: 10.1029/1999WR900140 |
[40] |
Boni G, Castelli F, Entekhabi D.Sampling strategies and assimilation of ground temperature for the estimation of surface energy balance components[J]. Geoscience & Remote Sensing IEEE Transactions on, 2001, 39(1):165-172.
doi: 10.1109/36.898678 |
[41] |
Caparrini F, Castelli F, Entekhabi D.Estimation of surface turbulent fluxes through assimilation of radiometric surface temperature sequences[J]. Journal of Hydrometeorology, 2004, 5(1):145-159.
doi: 10.1175/1525-7541(2004)005<0145:EOSTFT>2.0.CO;2 |
[42] |
Crow W T, Kustas W P.Utility of assimilating surface radiometric temperature observations for evaporative fraction and heat transfer coefficient retrieval[J]. Boundary-Layer Meteorology, 2005, 115(1):105-130.
doi: 10.1007/s10546-004-2121-0 |
[43] |
Bateni S M, Entekhabi D, Jeng D S.Variational assimilation of land surface temperature and the estimation of surface energy balance components[J]. Journal of Hydrology, 2013, 481:143-156.
doi: 10.1016/j.jhydrol.2012.12.039 |
[44] |
Sini F, Boni G, Caparrini F et al. Estimation of large-scale evaporation fields based on assimilation of remotely sensed land temperature[J]. Water Resources Research, 2008, 44(6):663-671.
doi: 10.1029/2006WR005574 |
[1] | 曹永强, 高璐, 袁立婷, 李维佳. 辽宁省潜在蒸散发量及其敏感性规律分析[J]. 地理科学, 2017, 37(9): 1422-1429. |
[2] | 赵海根, 杨胜天, 周旭. 基于数据同化技术的延河流域绿水模拟研究[J]. 地理科学, 2017, 37(7): 1112-1119. |
[3] | 张静, 任志远. 基于MOD16的汉江流域地表蒸散发时空特征[J]. 地理科学, 2017, 37(2): 274-282. |
[4] | 王炳亮, 李国胜. 1961~2010年辽河三角洲参考蒸散发变化特征及主导因子分析[J]. 地理科学, 2014, 34(10): 1233-1238. |
[5] | 王炳亮, 李国胜. 辽河三角洲不同干湿气候区参考蒸散发敏感因子时空变化[J]. 地理科学, 2013, 33(9): 993-998. |
[6] | 徐康, 吴绍华, 陈东湘, 戴靓, 周生路. |
[7] | 杨忍, 刘彦随, 陈玉福, 李婷婷. 环渤海地区耕地复种指数时空变化遥感反演及影响因素探测[J]. 地理科学, 2013, 33(5): 588-593. |
[8] | 冯海霞, 朱爱民, 何必, 刘含海. 基于遥感反演的山东省森林资源调节温度服务的研究[J]. 地理科学, 2009, 29(5): 760-765. |
[9] | 张万昌, 高永年. 区域土壤植被系统蒸散发二源遥感估算[J]. 地理科学, 2009, 29(4): 523-528. |
[10] | 刘三超, 张万昌, 高懋芳, 柳钦火. 分布式水文模型结合遥感研究地表蒸散发[J]. 地理科学, 2007, 27(3): 354-358. |
[11] | 杨忍, 刘彦随, 陈玉福, 李婷婷. 环渤海地区耕地复种指数时空变化遥感反演及影响因素探测[J]. 地理科学, 0, 0(): 0-0. |
|