地理科学 ›› 2018, Vol. 38 ›› Issue (4): 636-644.doi: 10.13249/j.cnki.sgs.2018.04.018
• • 上一篇
收稿日期:
2017-03-13
修回日期:
2017-07-20
出版日期:
2018-04-20
发布日期:
2018-04-20
作者简介:
作者简介:刘星才(1984-),男,江西吉安人,助理研究员,主要从事陆地水循环和气候变化研究。E-mail:
基金资助:
Xingcai Liu1(), Qiuhong Tang1(
), Yuanyuan Yin1, Xinchuang Xu2
Received:
2017-03-13
Revised:
2017-07-20
Online:
2018-04-20
Published:
2018-04-20
Supported by:
摘要:
综合环境风险区划是变化环境下开展综合防灾减灾工作的基础,对于综合风险防范措施的制定具有指导意义。以农业、生态和人群3个系统为主要受灾体,从作物产量、生态系统变迁、高温热浪对人群的影响3个方面综合评估了4种典型浓度路径(Representative Concentration Pathways)RCP2.6、RCP4.5、RCP6.0和RCP8.5情景下21世纪末期(2071~2099年)的中国综合环境风险,并以RCP8.5情景为例编制了未来综合环境风险区划。结果表明,该时期中国综合环境风险主要出现在黄淮海地区、华南部分地区和青藏高原部分地区。综合环境风险区划共分为6个一级区和43个二级区;一级区分别为西北低风险区、东北生态较低风险区、青藏高原生态中度风险区、晋陕生态-农业中度风险区、华南农业高风险区、黄淮海农业-热浪高风险区。
中图分类号:
刘星才, 汤秋鸿, 尹圆圆, 徐新创. 气候变化下中国未来综合环境风险区划研究[J]. 地理科学, 2018, 38(4): 636-644.
Xingcai Liu, Qiuhong Tang, Yuanyuan Yin, Xinchuang Xu. Regionalization of Integrated Environmental Risk of China Under Future Climate Change[J]. SCIENTIA GEOGRAPHICA SINICA, 2018, 38(4): 636-644.
表1
综合环境风险区划特征"
综合环境风险区a | 特征b | 主要环境风险 |
---|---|---|
西北低风险区(2) | 气候干燥、降水很少,地表覆盖以荒漠/沙漠为主,有少量绿洲,人口密度很低,农业很少;未来气温上升约5.7℃,降水增加约15.6% | 有轻度农业风险,但面积较少,总体风险低 |
东北生态较低风险区(6) | 处于高纬度地区,气温较低,属于半湿润/半干旱地区;植被以草地和森林为主;农业较为发达,是中国主要粮食产地之一,人口密度中等;未来气温上升约5.75℃,降水增加约16% | 以农业和生态风险为主,两种风险均分布不广,程度中等或偏低 |
青藏高原生态中度风险区(8) | 自然地理环境独特,海拔高、气温低,冰雪覆盖面积较大,是中国重要河流发源地;植被以高寒草地草甸为主,生态系统相对较为脆弱;人口稀少,农业极少;未来气温上升约5.5℃,降水增加约22% | 以生态风险为主,程度中等、少部分地区偏高 |
晋陕生态-农业中度风险区(7) | 黄土高原和太行山脉山区,大部分属于半干旱地区;植被覆盖较少,部分为人工植被;农业较发达,人口密度中等;未来气温上升约4.9℃,降水增加约16.5% | 以农业和生态风险为主,程度中等 |
华南农业高风险区(10) | 南方湿润地区,覆盖了长江中下游大部、珠江流域和东南沿海地区;气温较高,水量丰沛;植被覆盖好;农业发达,是中国主要粮食产区之一;人口密度高;未来气温上升约4.6℃,降水增加约7% | 以农业风险为主,主要在珠江流域,程度偏高;部分地区有较中低程度的高温热浪风险 |
黄淮海农业-热浪高风险区(10) | 主要为黄淮海平原,覆盖黄河下游、淮河与海河大部分地区,属于半干旱/半湿润地区;农业发达,中国主要粮食产区之一,人口密度高;未来气温上升约5℃,降水增加约11% | 以农业风险和高温热浪风险为主,程度都偏高 |
表2
综合环境风险二级区"
代码 | 二级区名称 | 代码 | 二级区名称 |
---|---|---|---|
Ia | 农业低风险-生态低风险-热浪低风险区 | IVg | 农业低风险-生态中低风险-热浪低风险区 |
Ib | 农业中风险-生态低风险-热浪低风险区 | Va | 农业高风险-生态极低风险-热浪高风险区 |
IIa | 农业低风险-生态中风险-热浪低风险区 | Vb | 农业中风险-生态低风险-热浪低风险区 |
IIb | 农业低风险-生态低风险-热浪低风险区 | Vc | 农业极低风险-生态低风险-热浪低风险区 |
IIc | 农业中风险-生态低风险-热浪低风险区 | Vd | 农业中风险-生态低风险-热浪极高风险区 |
IId | 农业低风险-生态高风险-热浪低风险区 | Ve | 农业低风险-生态中低风险-热浪中低风险区 |
IIe | 农业低风险-生态低风险-热浪中风险区 | Vf | 农业中风险-生态低风险-热浪高风险区 |
IIf | 农业低风险-生态极低风险-热浪低风险区 | Vg | 农业高风险-生态低风险-热浪中风险区 |
IIIa | 农业极低风险-生态高风险-热浪极低风险区 | Vh | 农业中风险-生态低风险-热浪中高风险区 |
IIIb | 农业低风险-生态极高风险-热浪低风险区 | Vi | 农业中低风险-生态低风险-热浪低风险区 |
IIIc | 农业低风险-生态中低风险-热浪低风险区 | Vj | 农业低风险-生态低风险-热浪极低风险区 |
IIId | 农业极低风险-生态极高风险-热浪极低风险区 | VIa | 农业中风险-生态低风险-热浪中高风险区 |
IIIe | 农业低风险-生态极高风险-热浪极低风险区 | VIb | 农业极高风险-生态极低风险-热浪极高风险区 |
IIIf | 农业低风险-生态高风险-热浪极低风险区 | VIc | 农业高风险-生态极低风险-热浪中高风险区 |
IIIg | 农业低风险-生态高风险-热浪低风险区 | VId | 农业高风险-生态低风险-热浪高风险区 |
IIIh | 农业中低风险-生态中低风险-热浪低风险区 | VIe | 农业中风险-生态低风险-热浪中风险区 |
IVa | 农业中风险-生态低风险-热浪低风险区 | VIf | 农业低风险-生态低风险-热浪低风险区 |
IVb | 农业低风险-生态低风险-热浪低风险区 | VIg | 农业高风险-生态极低风险-热浪高风险区 |
IVc | 农业中风险-生态中风险-热浪低风险区 | VIh | 农业中风险-生态极低风险-热浪极高风险区 |
IVd | 农业中低风险-生态中低风险-热浪低风险区 | VIi | 农业中风险-生态低风险-热浪高风险区 |
IVe | 农业中风险-生态极低风险-热浪中风险区 | VIj | 农业极低风险-生态低风险-热浪中风险区 |
IVf | 农业中风险-生态低风险-热浪高风险区 |
[1] | 吴绍洪. 综合风险防范[M]. 北京: 科学出版社, 2011. |
[Wu Shaohong.Integrated risk govenance. Beijing: Science Press, 2011.] | |
[2] |
史培军, 袁艺. 重特大自然灾害综合评估[J]. 地理科学进展, 2014, 33(9): 1145-1151.
doi: 10.11820/dlkxjz.2014.09.001 |
[Shi Peijun, Yuan Yi.Integrated assessment of large-scale natural disasters in China. Progress in Geography, 2014, 33(9): 1145-1151.]
doi: 10.11820/dlkxjz.2014.09.001 |
|
[3] | 黄秉维. 中国综合自然区划的初步草案[J]. 地理学报, 1958, 24(4):14-31. |
[Huang Bingwei.A preliminary draft of China integrated natural regionalization. Acta Geographica Sinica, 1958, 24(4):14-31.] | |
[4] | 马宗晋. 中国重大自然灾害及减灾对策[M]. 北京: 科学出版社, 1994. |
[Ma Zongjin.Major natural disasters and countermeasures for disaster reduction in China. Beijing: Science Press, 1994.] | |
[5] |
王平, 史培军. 中国农业自然灾害综合区划方案[J]. 自然灾害学报, 2000, 9(4): 16-23.
doi: 10.3969/j.issn.1004-4574.2000.04.003 |
[Wang Ping, Shi Peijun.Comprehensive regionalization of agricultural natural disaster in China. Journal of Natural Disasters, 2000, 9(4): 16-23.]
doi: 10.3969/j.issn.1004-4574.2000.04.003 |
|
[6] |
张峭, 王克. 我国农业自然灾害风险评估与区划[J]. 中国农业资源与区划, 2011, 32(3): 32-36.
doi: 10.7621/cjarrp.1005-9121.20110306 |
[Zhang Qiao, Wang Ke.Assessment and regional planning of Chinese agricultural natural disaster risks. Chinese Journal of Agricultural Resources and Regional Planning, 2011, 32(3): 32-36.]
doi: 10.7621/cjarrp.1005-9121.20110306 |
|
[7] |
Hao L, Zhang X, Liu S.Risk assessment to China’s agricultural drought disaster in county unit[J].Natural Hazards, 2011, 61(2): 785-801.
doi: 10.1007/s11069-011-0066-4 |
[8] |
王静爱,史培军,王瑛, 等. 中国城市自然灾害区划编制[J]. 自然灾害学报, 2005,14(6):42-46.
doi: 10.3969/j.issn.1004-4574.2005.06.008 |
[Wang Jing’ai, Shi Peijun, Wang Ying et al. Compilation of city natural disaster regionalization in China. Journal of Natural Disasters, 2005, 14(6): 42-46.]
doi: 10.3969/j.issn.1004-4574.2005.06.008 |
|
[9] |
Shi P J, Du J, Ji M et al. Urban risk assessment research of major natural disasters in China[J]. Advances in Earth Science, 2006, 21(2): 170-177.
doi: 10.1016/S1002-0160(06)60035-0 |
[10] | 邓国, 王昂生, 周玉淑, 等. 中国省级粮食产量的风险区划研究[J]. 大气科学学报, 2002, 25(3): 373-379. |
[Deng Guo, Wang Angsheng, Zhou Yushu et al. China grain yield risk division at the level of province. Journal of Nanjing Institute of Meteorology, 2002, 25(3): 373-379.] | |
[11] |
周成虎, 万庆, 黄诗峰, 等. 基于GIS的洪水灾害风险区划研究[J]. 地理学报, 2000, 55(1): 15-24.
doi: 10.3321/j.issn:0375-5444.2000.01.003 |
[Zhou Chenghu, Wan Qing, Huang Shifeng et al. A GIS-based approach to flood risk zonation. Acta Geographica Sinica, 2000, 55(1): 15-24.]
doi: 10.3321/j.issn:0375-5444.2000.01.003 |
|
[12] |
张行南, 罗健, 陈雷, 等. 中国洪水灾害危险程度区划[J]. 水利学报, 2000, 3: 1-7.
doi: 10.3321/j.issn:0559-9350.2000.03.001 |
[Zhang Xingnan, Luo Jian, Chen Lei et al. Zoning of Chinese flood hazard risk. Journal of Hydraulic Engineering, 2000, 3: 1-7.]
doi: 10.3321/j.issn:0559-9350.2000.03.001 |
|
[13] | 田国珍, 刘新立, 王平, 等. 中国洪水灾害风险区划及其成因分析[J]. 灾害学, 2006, 21(2):1-6. |
[Tian Guozhen, Liu Xinli, Wang Ping et al. Flood risk zoning and causal analysis in China. Journal of Catastrophology, 2006, 21(2):1-6.] | |
[14] | 李林涛, 徐宗学, 庞博, 等. 中国洪灾风险区划研究[J]. 水利学报, 2012, 43(1): 22-30. |
[Li Lintao, Xu Zongxue, Pang Bo et al. Flood risk zoning in China. Journal of Hydraulic Engineering, 2012, 43(1): 22-30.] | |
[15] |
Wu S, Pan T, He S.Climate change risk research: A case study on flood disaster risk in China[J]. Advances in Climate Change Research, 2012, 3(2): 92-98.
doi: 10.3724/SP.J.1248.2012.00092 |
[16] | 史培军, 黄崇福, 叶涛, 等. 建立中国综合风险管理体系[J]. 中国减灾, 2005, 1: 37-39. |
[Shi Peijun, Huang Chongfu, Ye Tao et al. Construction of integrated risk management system in China. Disaster Reduction in China, 2005, 1: 37-39.] | |
[17] |
Briggs D J A. Framework for integrated environmental health impact assessment of systemic risks[J]. Environmental Health, 2008, 7(1): 1-17.
doi: 10.1186/1476-069X-7-1 pmid: 2263033 |
[18] | 盖程程, 翁文国, 袁宏永. 基于GIS的多灾害耦合综合风险评估[J]. 清华大学学报:自然科学版, 2011, 51(5): 627-631. |
[Gai Chengcheng, Weng Wenguo, Yuan Hongyong.Multi-hazard risk assessment using GIS in urban areas. Journal of Tsinghua University (Science and Technology), 2011, 51(5): 627-631.] | |
[19] |
Min S K, Zhang X, Zwiers F W et al. Human contribution to more-intense precipitation extremes[J]. Nature, 2011, 470(7334): 378-381.
doi: 10.1038/nature09763 pmid: 21331039 |
[20] |
Mueller B, Seneviratne S I.Hot days induced by precipitation deficits at the global scale[J]. Proceedings of the National Academy of Sciences, 2012, 109(31): 12398-12403.
doi: 10.1073/pnas.1204330109 pmid: 22802672 |
[21] | 姜彤, 王润, Lorenz King.1998年全球自然灾害评析[J]. 自然灾害学报, 1999, 8(3): 1-6. |
[Jiang Tong, Wang Run, Lorenz King.Analysis of global natural catastrophes in 1998. Journal of Natural Disasters, 1999, 8(3): 1-6.] | |
[22] | 史培军. 中国自然灾害系统地图集[M]. 北京: 科学出版社, 2003. |
[Shi Peijun.Atlas of natural disaster System of China. Beijing: Science Press, 2003.] | |
[23] |
He J, Yang X, Li Z et al. Spatiotemporal variations of meteorological droughts in China during 1961-2014: An investigation based on multi-threshold identification[J]. International Journal of Disaster Risk Science, 2016: 7(1): 63-76.
doi: 10.1007/s13753-016-0083-8 |
[24] | IPCC. Managing the risks of extreme events and disasters to Advance climate change adaptation. A special report of working groups I and II of the intergovernmental Panel on climate change[M].//Field C B et al. Cambridge: Cambridge University Press, 2012. |
[25] |
Yin Y, Tang Q, Liu X.A multi-model analysis of change in potential yield of major crops in China under climate change[J]. Earth System Dynamics, 2015, 6(1): 45-59.
doi: 10.5194/esd-6-45-2015 |
[26] |
Yin Y, Tang Q, Wang L et al. Risk and contributing factors of ecosystem shifts over naturally vegetated land under climate change in China[J]. Scientific Reports, 2016,6(6):20905.
doi: 10.1038/srep20905 pmid: 4751438 |
[27] |
Heyder U, Schaphoff S, Gerten D, Lucht W.Risk of severe climate change impact on the terrestrial biosphere[J]. Environmental Research Letters, 2011, 6(3): 034036.
doi: 10.1088/1748-9326/6/3/034036 |
[28] |
Xu X, Ge Q, He S et al. Impact of high temperature on the mortality in summer of Wuhan, China[J]. Environmental Earth Sciences, 2016, 75(7): 1-9.
doi: 10.1007/s12665-015-4873-x |
[29] | Hewitt K, Burton I.The hazardousness of a place: a regional ecology of damaging events[M]. Toronto: University of Toronto Press, 1971. |
[30] |
Cutter S L, Solecki W D.The national pattern of airborne toxic releases[J]. The Professional Geographer, 1989, 41(2): 149-161.
doi: 10.1111/j.0033-0124.1989.00149.x |
[31] | United Nations Development Programme (UNDP), Bureau for Crisis Prevention and Recovery. Reducing disaster risk: a challenge for development[M]. New York: UNDP, Bureau for Crisis Prevention and Recovery, 2004. |
[32] |
Birkmann. Measuring vulnerability to natural hazards: towards disaster resilient societies[J]. Journal of Risk and Insurance, 2010,77~4):959-961.
doi: 10.1111/j.1539-6975.2010.01389.x |
[33] | Shi P J, Kasperson R, World atlas of natural disaster risk[M]. Heidelberg: Springer-Verlag Berlin and Beijing: Beijing Normal University Press, 2014. |
[34] |
Shi Peijun, Sun Shao, Wang Ming et al. Climate change regionalization in China (1961-2010). Science China Earth Sciences, 2014, 57(11): 2676-2689.
doi: 10.1007/s11430-014-4889-1 |
[35] |
Mo X, Liu S, Lin Z, et al.Regional crop yield, water consumption and water use efficiency and their responses to climate change in the North China Plain[J]. Agriculture, Ecosystems and Environment 2009, 134(1-2): 67-78.
doi: 10.1016/j.agee.2009.05.017 |
[36] |
姚檀栋, 秦大河, 沈永平, 等. 青藏高原冰冻圈变化及其对区域水循环和生态条件的影响[J]. 自然杂志, 2013, 35(3): 179-186.
doi: 10.3969/j.issn.0253-9608.2013.03.004 |
[Yao Tandong, Qin Dahe, Shen Yongping et al. Cryospheric changes and their impacts on regional water cycle and ecological conditions in the Qinghai-Tibetan Plateau. Chinese Journal of Nature, 2013, 35(3): 179-186.]
doi: 10.3969/j.issn.0253-9608.2013.03.004 |
|
[37] |
Rosenzweig C. Joshua E, Delphine D et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison[J]. Proceedings of the National Academy of Sciences, 2014, 111(9): 3268-3273.
doi: 10.1073/pnas.1222463110 pmid: 24344314 |
[38] |
Dong W, Liu Z, Liao H et al. New climate and socio-economic scenarios for assessing global human health challenges due to heat risk[J]. Climatic Change, 2015, 130(4): 505-518.
doi: 10.1007/s10584-015-1372-8 |
[39] |
Leng G, Tang Q, Huang S et al. Assessments of joint hydrological extreme risks in a warming climate in China[J]. International Journal of Climatology, 2016, 36(4): 1632-1642.
doi: 10.1002/joc.4447 |
[40] |
Schewe J, Jens H, Dieter G et al. Multimodel assessment of water scarcity under climate change[J]. Proceedings of the National Academy of Sciences, 2014, 111(9): 3245-3250.
doi: 10.1073/pnas.1222460110 |
[41] |
Scott M J, Daly D S, Hejazi M I et al. Sensitivity of future U.S. Water shortages to socioeconomic and climate drivers: a case study in Georgia using an integrated human-earth system modeling framework[J]. Climatic Change, 2016, 136(2): 233-246.
doi: 10.1007/s10584-016-1602-8 |
[42] |
吴绍洪, 赵艳, 汤秋鸿, 等. 面向“未来地球”计划的陆地表层格局研究[J]. 地理科学进展, 2015, 34(1): 10-17.
doi: 10.11820/dlkxjz.2015.01.002 |
[Wu Shaohong, Zhao Yan, Tang Qiuhong et al. Land surface pattern study under the framework of Future Earth. Progress in Geography, 2015, 34(1): 10-17.]
doi: 10.11820/dlkxjz.2015.01.002 |
|
[43] |
秦大河. 进入21世纪的气候变化科学—气候变化的事实、影响与对策[J]. 科技导报, 2004, 7: 4-7.
doi: 10.3321/j.issn:1000-7857.2004.07.002 |
[Qin Dahe.Climate change sciences into the 21st century: Facts, impact and strategies addressing climate change. Science & Technology Review, 2004, 7: 4-7.]
doi: 10.3321/j.issn:1000-7857.2004.07.002 |
[1] | 姬霖, 段克勤. 1960-2017年渭河流域极端气温变化及其对区域增暖的响应[J]. 地理科学, 2020, 40(3): 466-477. |
[2] | 齐庆华,蔡榕硕,郭海峡. 中国东部气温极端特性及其气候特征[J]. 地理科学, 2019, 39(8): 1340-1350. |
[3] | 高文兰, 李双双, 段克勤, 孔锋, 王娟. 基于均一化资料的西安极端气温变化特征研究[J]. 地理科学, 2018, 38(3): 464-473. |
[4] | 邓海军, 陈亚宁, 陈忠升. 增温增湿环境下天山山区降雪量变化[J]. 地理科学, 2018, 38(11): 1933-1942. |
[5] | 裴亮, 刘阳, 陈晨. 大凌河流域土地利用/覆被变化及其对气候变化的响应研究[J]. 地理科学, 2017, 37(9): 1403-1410. |
[6] | 金君良, 何健, 贺瑞敏, 刘翠善, 张建云, 王国庆, 鲍振鑫. 气候变化对淮河流域水资源及极端洪水事件的影响[J]. 地理科学, 2017, 37(8): 1226-1233. |
[7] | 高文华, 李开封, 崔豫. 1960~2014年河南极端气温事件时空演变分析[J]. 地理科学, 2017, 37(8): 1259-1269. |
[8] | 王成超, 杨玉盛, 庞雯, 洪静, 谢剑斌. 国内外农户对气候变化/变异感知与适应研究[J]. 地理科学, 2017, 37(6): 938-943. |
[9] | 王景才, 郭佳香, 徐蛟, 李帆. 近55年淮河上中游流域气候要素多时间尺度演变特征及关联性分析[J]. 地理科学, 2017, 37(4): 611-619. |
[10] | 杨春利, 蓝永超, 王宁练, 王启优, 李亚林. 1958~2015年疏勒河上游出山径流变化及其气候因素分析[J]. 地理科学, 2017, 37(12): 1894-1899. |
[11] | 方利, 王文杰, 蒋卫国, 陈民, 王永, 贾凯, 李延森. 2000~2014年黑龙江流域(中国)植被覆盖时空变化及其对气候变化的响应[J]. 地理科学, 2017, 37(11): 1745-1754. |
[12] | 张慧, 李忠勤, 牟建新, 何海迪. 近50年新疆天山奎屯河流域冰川变化及其对水资源的影响[J]. 地理科学, 2017, 37(11): 1771-1777. |
[13] | 赵安周, 赵玉玲, 刘宪锋, 朱秀芳, 潘耀忠, 陈抒晨. 气候变化和人类活动对渭河流域蓝水绿水影响研究[J]. 地理科学, 2016, 36(4): 571-579. |
[14] | 黄小燕, 王小平, 王劲松, 冯建英, 王圣杰. 1960~2013年中国沿海极端气温事件变化特征[J]. 地理科学, 2016, 36(4): 612-620. |
[15] | 舒培仙, 李保生, 牛东风, 王丰年, 温小浩, 司月君, 陈琼. 毛乌素沙漠东南缘滴哨沟湾剖面DGS1层段粒度特征及其指示的全新世气候变化[J]. 地理科学, 2016, 36(3): 448-457. |
|