地理科学 ›› 2020, Vol. 40 ›› Issue (3): 344-353.doi: 10.13249/j.cnki.sgs.2020.03.002
王凯1, 张淑文1, 甘畅1, 杨亚萍1, 刘浩龙2
收稿日期:
2019-05-07
修回日期:
2019-08-10
出版日期:
2020-03-10
发布日期:
2020-05-13
作者简介:
王凯(1969-),男,湖南新宁人,教授,博导,主要从事低碳经济、区域旅游发展规划研究。E-mail: 基金资助:
Wang Kai1, Zhang Shuwen1, Gan Chang1, Yang Yaping1, Liu Haolong2
Received:
2019-05-07
Revised:
2019-08-10
Online:
2020-03-10
Published:
2020-05-13
Supported by:
摘要:
基于中国30个省区2001-2016年面板数据,采用SBM模型测度各省区旅游业碳排放效率,借助修正的引力模型和社会网络分析方法,厘清中国旅游业碳排放效率的空间网络结构及其效应。研究表明:① 中国旅游业碳排放效率的空间关联渐趋紧密,网络发育程度日益完善,但距理想状态仍有差距;② 各省区网络中心性指标分异性逐步减小,上海、北京、江苏等省区排名稳居前列,重庆、福建、内蒙古等省区排名波动上升,宁夏、青海、山西等省区排名相对滞后;③ 网络整体呈核心区由东部沿海向中部及西南地区持续扩展,而边缘区范围逐步收缩态势;④ 网络密度与旅游业碳排放效率呈正相关,与旅游业碳排放效率差异构成负相关关系,网络等级度和网络效率则与之相反,网络中心性各指标的提升均能显著增强旅游业碳排放效率。
中图分类号:
王凯, 张淑文, 甘畅, 杨亚萍, 刘浩龙. 中国旅游业碳排放效率的空间网络结构及其效应研究[J]. 地理科学, 2020, 40(3): 344-353.
Wang Kai, Zhang Shuwen, Gan Chang, Yang Yaping, Liu Haolong. Spatial Network Structure of Carbon Emission Efficiency of Tourism Industry and Its Effects in China[J]. SCIENTIA GEOGRAPHICA SINICA, 2020, 40(3): 344-353.
表1
中国旅游业碳排放效率网络中心性分析"
省区 | 2001年 | 2006年 | 2011年 | 2016年 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CAB | CAp | CAD | CAB | CAp | CAD | CAB | CAp | CAD | CAB | CAp | CAD | ||||
安徽 | 10.345 | 51.786 | 0.018 | 13.793 | 51.786 | 0.035 | 20.690 | 51.786 | 0.102 | 27.586 | 58.000 | 0.601 | |||
北京 | 68.966 | 76.316 | 8.849 | 75.862 | 78.378 | 11.566 | 65.517 | 72.500 | 9.769 | 72.414 | 78.378 | 6.127 | |||
重庆 | 24.138 | 56.863 | 0.441 | 37.931 | 61.702 | 1.048 | 48.276 | 65.909 | 2.834 | 55.172 | 69.048 | 1.733 | |||
福建 | 17.241 | 54.717 | 0.112 | 55.172 | 69.048 | 3.851 | 44.828 | 63.043 | 1.186 | 62.069 | 72.500 | 2.530 | |||
甘肃 | 24.138 | 56.863 | 0.274 | 27.586 | 58.000 | 0.553 | 37.931 | 61.702 | 1.351 | 41.379 | 63.043 | 1.083 | |||
广东 | 58.621 | 63.043 | 8.812 | 58.621 | 70.732 | 5.137 | 51.724 | 59.184 | 4.469 | 48.276 | 61.702 | 2.554 | |||
广西 | 13.793 | 53.704 | 0.186 | 20.690 | 55.769 | 0.318 | 31.034 | 59.184 | 1.112 | 37.931 | 61.702 | 0.691 | |||
贵州 | 20.690 | 55.769 | 0.274 | 27.586 | 58.000 | 0.299 | 31.034 | 59.184 | 0.884 | 37.931 | 61.702 | 0.691 | |||
海南 | 10.345 | 52.727 | 0.040 | 17.241 | 54.717 | 0.113 | 27.586 | 51.786 | 0.488 | 34.483 | 60.417 | 0.347 | |||
河北 | 17.241 | 54.717 | 0.076 | 24.138 | 56.863 | 0.154 | 31.034 | 56.863 | 0.655 | 37.931 | 60.417 | 0.462 | |||
河南 | 27.586 | 58.000 | 0.576 | 41.379 | 63.043 | 1.461 | 37.931 | 61.702 | 0.993 | 48.276 | 65.909 | 1.088 | |||
黑龙江 | 13.793 | 52.727 | 0.030 | 13.793 | 53.704 | 0.033 | 24.138 | 54.717 | 0.891 | 51.724 | 67.442 | 1.975 | |||
湖北 | 20.690 | 55.769 | 0.274 | 34.483 | 60.417 | 0.469 | 37.931 | 61.702 | 1.377 | 44.828 | 64.444 | 1.443 | |||
湖南 | 24.138 | 56.863 | 0.607 | 37.931 | 61.702 | 1.126 | 41.379 | 63.043 | 1.772 | 51.724 | 67.442 | 1.316 | |||
吉林 | 17.241 | 53.704 | 0.030 | 17.241 | 54.717 | 0.095 | 13.793 | 48.333 | 0.000 | 41.379 | 63.043 | 1.184 | |||
江苏 | 65.517 | 74.359 | 9.120 | 58.621 | 70.732 | 5.384 | 72.414 | 78.378 | 11.292 | 72.414 | 78.378 | 6.183 | |||
江西 | 17.241 | 54.717 | 0.201 | 20.690 | 55.769 | 0.186 | 34.483 | 58.000 | 0.986 | 44.828 | 64.444 | 1.312 | |||
辽宁 | 17.241 | 53.704 | 0.030 | 17.241 | 54.717 | 0.199 | 27.586 | 55.769 | 1.379 | 37.931 | 61.702 | 0.393 | |||
内蒙古 | 13.793 | 52.727 | 0.000 | 27.586 | 58.000 | 0.446 | 65.517 | 72.500 | 7.002 | 75.862 | 80.556 | 6.745 | |||
宁夏 | 20.690 | 55.769 | 0.274 | 27.586 | 58.000 | 0.427 | 24.138 | 56.863 | 0.449 | 27.586 | 58.000 | 0.283 | |||
青海 | 20.690 | 55.769 | 0.274 | 27.586 | 58.000 | 0.553 | 27.586 | 58.000 | 0.581 | 31.034 | 59.184 | 0.411 | |||
山东 | 17.241 | 54.717 | 0.191 | 20.690 | 55.769 | 0.214 | 20.690 | 53.704 | 0.242 | 37.931 | 60.417 | 0.680 | |||
山西 | 27.586 | 58.000 | 0.795 | 27.586 | 58.000 | 0.369 | 27.586 | 55.769 | 0.407 | 31.034 | 58.000 | 0.406 | |||
陕西 | 24.138 | 56.863 | 0.441 | 27.586 | 58.000 | 0.438 | 31.034 | 59.184 | 0.930 | 41.379 | 63.043 | 1.044 | |||
上海 | 96.552 | 96.667 | 29.300 | 93.103 | 93.548 | 21.309 | 65.517 | 74.359 | 7.766 | 68.966 | 76.316 | 5.267 | |||
四川 | 24.138 | 56.863 | 0.441 | 31.034 | 59.184 | 0.487 | 34.483 | 60.417 | 1.080 | 31.034 | 59.184 | 0.396 | |||
天津 | 65.517 | 74.359 | 7.663 | 68.966 | 74.359 | 8.355 | 48.276 | 63.043 | 3.658 | 65.517 | 74.359 | 3.834 | |||
新疆 | 27.586 | 58.000 | 1.120 | 34.483 | 60.417 | 0.789 | 48.276 | 65.909 | 3.526 | 58.621 | 70.732 | 3.839 | |||
云南 | 20.690 | 55.769 | 0.274 | 27.586 | 58.000 | 0.299 | 34.483 | 60.417 | 1.112 | 41.379 | 63.043 | 0.710 | |||
浙江 | 55.172 | 69.048 | 6.120 | 55.172 | 69.048 | 3.746 | 51.724 | 65.909 | 2.396 | 55.172 | 69.048 | 2.060 | |||
均值 | 29.425 | 59.363 | 2.561 | 35.632 | 61.671 | 2.315 | 38.621 | 60.962 | 2.356 | 47.126 | 65.720 | 1.913 |
[1] | WTTC. Leading the challenge on climate change[M]. London: World Travel & Tourism Council, 2009. |
[2] |
王坤, 黄震方, 曹芳东 . 中国旅游业碳排放效率的空间格局及其影响因素[J]. 生态学报, 2015,35(21):7150-7160.
doi: 10.5846/stxb201402260334 |
[ Wang Kun, Huang Zhenfang, Cao Fangdong . Spatial pattern and influencing factors of carbon dioxide emissions efficiency of tourism in China. Acta Ecologica Sinica, 2015,35(21):7150-7160.]
doi: 10.5846/stxb201402260334 |
|
[3] | 王凯, 夏莉惠, 陈勤昌 , 等. 基于空间聚类分析的中国旅游业碳排放效率[J]. 环境科学研究, 2018,31(3):419-427. |
[ Wang Kai, Xia Lihui, Chen Qinchang et al. Carbon emission efficiency in China's tourism industry by spatial clustering analysis. Research of Environmental Sciences, 2018,31(3):419-427.] | |
[4] | 王凯, 邵海琴, 周婷婷 , 等. 中国旅游业碳排放效率及其空间关联特征[J]. 长江流域资源与环境, 2018,27(3):473-482. |
[ Wang Kai, Shao Haiqin, Zhou Tingting et al. A study on carbon emissions efficiency of tourism and its spatial correlation characteristics in China. Resources and Environment in The Yangtze Basin, 2018,27(3):473-482.] | |
[5] |
Corne A . Benchmarking and tourism efficiency in France[J]. Tourism Management, 2015,51:91-95.
doi: 10.1016/j.tourman.2015.05.006 |
[6] |
Assaf A G . Benchmarking the Asia Pacific tourism industry: A Bayesian combination of DEA and stochastic frontier[J]. Tourism Management, 2012,33(5):1122-1127.
doi: 10.1016/j.tourman.2011.11.021 |
[7] |
Hadad S, Hadad Y, Malul M , et al. The economic efficiency of the tourism industry: A global comparison[J]. Tourism Economics, 2012,18(5):931-940.
doi: 10.5367/te.2012.0165 |
[8] | 曹芳东, 黄震方, 吴江 , 等. 城市旅游发展效率的时空格局演化特征及其驱动机制——以泛长江三角洲地区为例[J]. 地理研究, 2012,31(8):1431-1444. |
[ Cao Fangdong, Huang Zhenfang, Wu Jiang et al. The space-time pattern evolution and its driving mechanism of urban tourism development efficiency: A case study of Pan-Yangtze River Delta. Geographical Research, 2012,31(8):1431-1444.] | |
[9] |
Gabarda-Mallorquí A, Garcia X, Ribas A . Mass tourism and water efficiency in the hotel industry: A case study[J]. International Journal of Hospitality Management, 2017,61:82-93.
doi: 10.1016/j.ijhm.2016.11.006 |
[10] |
Juan G B, Manuela D, Manuela P . Tourism and transport systems in mountain environments: Analysis of the economic efficiency of cableways in South Tyrol[J]. Journal of Transport Geography, 2014,36:1-11.
doi: 10.1016/j.jtrangeo.2014.02.004 |
[11] |
Medina L F, Gómez I G, Marrero S M . Measuring efficiency of sun & beach tourism destinations[J]. Annals of Tourism Research, 2012,39(2):1248-1251.
doi: 10.1016/j.annals.2011.12.006 |
[12] |
Gossling S, Peeters P, Ceron J P et al. The eco-efficiency of tourism[J]. Ecological Economics, 2005,54(4):417-434.
doi: 10.1016/j.ecolecon.2004.10.006 |
[13] |
Wang Shuxin, Wang Genxu, Fang Yiping . Factors influencing the energy efficiency of tourism transport in China[J]. Journal of Resources and Ecology, 2016,7(4):246-253.
doi: 10.5814/j.issn.1674-764x.2016.04.002 |
[14] |
查建平, 钱醒豹, 赵倩倩 , 等. 中国旅游全要素生产率及其分解研究[J]. 资源科学, 2018,40(12):2461-2474.
doi: 10.18402/resci.2018.12.13 |
[ Zha Jianping, Qian Xingbao, Zhao Qianqian et al. Estimation and decomposition of total factors productivity of China's tourism. Resources Science, 2018,40(12):2461-2474.]
doi: 10.18402/resci.2018.12.13 |
|
[15] |
Tone K . A slacks-based measure of efficiency in data envelopment analysis[J]. European Journal of Operational Research, 2001,130(3):498-509.
doi: 10.1016/S0377-2217(99)00407-5 |
[16] |
盖美, 展亚荣 . 中国沿海省区海洋生态效率空间格局演化及影响因素分析[J]. 地理科学, 2019,39(4):616-625.
doi: 10.13249/j.cnki.sgs.2019.04.011 |
[ Gai Mei, Zhan Yarong . Spatial evolution of marine ecological efficiency and its influential factors in China coastal regions. Scientia Geographica Sinica, 2019,39(4):616-625.]
doi: 10.13249/j.cnki.sgs.2019.04.011 |
|
[17] |
王耕, 李素娟, 马奇飞 . 人类福祉视角下中国生态效率时空演化研究[J]. 地理科学, 2018,38(10):1597-1605.
doi: 10.13249/j.cnki.sgs.2018.10.003 |
[ Wang Geng, Li Sujuan, Ma Qifei . Spatial-temporal evolution of Chinese eco-efficiency from the perspective of human well-being. Scientia Geographica Sinica, 2018,38(10):1597-1605.]
doi: 10.13249/j.cnki.sgs.2018.10.003 |
|
[18] | Wasserman S, Faust K. Social network analysis: Methods and applications[M]. London: Cambridge University Press, 1994: 180-186. |
[19] | 刘佳, 宋秋月 . 中国旅游产业绿色创新效率的空间网络结构与形成机制[J]. 中国人口·资源与环境, 2018,28(8):127-137. |
[ Liu Jia, Song Qiuyue . Space network structure and formation mechanism of green innovation efficiency of tourism industry in China. China Population, Resources and Environment, 2018,28(8):127-137.] | |
[20] |
于谨凯, 马健秋 . 山东半岛城市群经济联系空间格局演变研究[J]. 地理科学, 2018,38(11):1875-1882.
doi: 10.13249/j.cnki.sgs.2018.11.015 |
[ Yu Jinkai, Ma Jianqiu . Spatial pattern evolution of economic links in Shandong Peninsula urban agglomeration. Scientia Geographica Sinica, 2018,38(11):1875-1882.]
doi: 10.13249/j.cnki.sgs.2018.11.015 |
|
[21] | 刘华军, 刘传明, 孙亚男 . 中国能源消费的空间关联网络结构特征及其效应研究[J]. 中国工业经济, 2015,13(5):83-95. |
[ Liu Huajun, Liu Chuanming, Sun Yanan . Spatial correlation network structure of energy consumption and its effect in China. China Industrial Economics, 2015,13(5):83-95.] | |
[22] | 王凯, 张淑文, 甘畅 , 等. 我国旅游业碳排放的空间关联性及其影响因素[J]. 环境科学研究, 2019,32(6):938-947. |
[ Wang Kai, Zhang Shuwen, Gan Chang et al. Spatial correlation of carbon emissions in tourism industry and its influencing factors in China. Research of Environmental Sciences, 2019,32(6):938-947.] | |
[23] |
李俊峰, 陶世杰, 高凌宇 . 跨江发展下杭州市企业迁移空间模式及影响机制[J]. 地理科学, 2018,38(1):87-96.
doi: 10.13249/j.cnki.sgs.2018.01.010 |
[ Li Junfeng, Tao Shijie, Gao Lingyu . The space model and the influence mechanism of enterprise migration under river-crossing development in Hangzhou. Scientia Geographica Sinica, 2018,38(1):87-96.]
doi: 10.13249/j.cnki.sgs.2018.01.010 |
|
[24] |
马丽君, 龙云 . 基于社会网络分析法的中国省际入境旅游经济增长空间关联性[J]. 地理科学, 2017,37(11):1705-1711.
doi: 10.13249/j.cnki.sgs.2017.11.012 |
[ Ma Lijun, Long Yun . The spatial correlation of economic growth of inbound tourism in China based on social network analysis. Scientia Geographica Sinica, 2017,37(11):1705-1711.]
doi: 10.13249/j.cnki.sgs.2017.11.012 |
|
[25] | Fritze M P, Urmetzer F, Khan G F et al. From goods to services consumption: A social network analysis on sharing economy and servitization research[J]. Journal of Service Management Research, 2018,2(3):3-16. |
[26] |
杨丽花, 刘娜, 白翠玲 . 京津冀雄旅游经济空间结构研究[J]. 地理科学, 2018,38(3):394-401.
doi: 10.13249/j.cnki.sgs.2018.03.009 |
[ Yang Lihua, Liu Na, Bai Cuiling . The spatial structure of the tourism economy in Beijing-Tianjin-Hebei-Xiongan region. Scientia Geographica Sinica, 2018,38(3):394-401.]
doi: 10.13249/j.cnki.sgs.2018.03.009 |
|
[27] | 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2002-2017. |
[ National Bureau of Statistics of China. China statistical yearbook. Beijing: China Statistics Press, 2002-2017.] | |
[28] | 国家统计局能源统计司. 中国能源统计年鉴[M]. 北京: 中国统计出版社, 2002-2017. |
[ Department of Energy Statistics, National Bureau of Statistics . China energy statistical yearbook. Beijing: China Statistics Press, 2002-2017.] | |
[29] | 中国交通运输协会. 中国交通年鉴[M]. 北京: 中国交通年鉴社, 2002-2017. |
[ China Communications and Transportation Association. Yearbook of China transportation and communications. Beijing: Yearbook House of China Transportation and Communications, 2002-2017.] | |
[30] | 国家旅游局政策法规司. 旅游抽样调查资料[M]. 北京: 中国旅游出版社, 2002-2017. |
[ Department of Policies and Regulations, National Tourism Administration. The sampling survey data of tourism. Beijing: China Travel &Tourism Press, 2002-2017.] | |
[31] | 中华人民共和国国家旅游局. 中国旅游统计年鉴(副本)[M]. 北京: 中国旅游出版社, 2002-2017. |
[ National Tourism Administration of the People’s Republic of China. The yearbook of China tourism statistics(copy). Beijing: China Travel &Tourism Press, 2002-2017.] | |
[32] | 刘军 . 整体网分析——UCINET软件实用指南(第二版)[M]. 上海: 格致出版社, 2014: 98-161. |
[ Liu Jun. Lectures on whole network approach: A practice guide to UCINET (2nd). Shanghai: Truth & Wisdom Press, 2014: 98-161.] |
[1] | 程豪, 杨钊. 从大众旅游到乡村旅居:乡村区域旅游发展的新趋势——基于元方法的驱动力分析与旅居地假设[J]. 地理科学, 2021, 41(1): 83-91. |
[2] | 田里, 刘亮. 旅游孤岛效应演化机理研究——以云南普者黑旅游区为例[J]. 地理科学, 2021, 41(1): 22-32. |
[3] | 张子昂, 保继刚. 多重距离对中国入境与出境旅游流的影响:基于组态的视角[J]. 地理科学, 2021, 41(1): 13-21. |
[4] | 徐少癸, 左逸帆, 章牧. 基于模糊物元模型的中国旅游生态安全评价及障碍因子诊断研究[J]. 地理科学, 2021, 41(1): 33-43. |
[5] | 麻学锋, 刘玉林, 谭佳欣. 旅游驱动的乡村振兴实践及发展路径[J]. 地理科学, 2020, 40(12): 2019-2026. |
[6] | 刘长生, 董瑞甜, 简玉峰. 旅游业发展产业协同与荷兰病效应研究——基于胡焕庸线的思考[J]. 地理科学, 2020, 40(12): 2073-2084. |
[7] | 赵书虹, 白梦. 云南省品牌旅游资源竞争力与旅游流耦合协调特征及其影响因素分析[J]. 地理科学, 2020, 40(11): 1878-1888. |
[8] | 于洪雁, 王群勇, 张博, 刘继生. 中国旅游供需耦合协调发展的空间分异及驱动机制研究[J]. 地理科学, 2020, 40(11): 1889-1898. |
[9] | 孙晓东, 徐美华. 邮轮属性评价与品牌定位[J]. 地理科学, 2020, 40(10): 1688-1697. |
[10] | 生延超, 刘晴. 人力资本促进区域旅游经济效率的空间差异研究[J]. 地理科学, 2020, 40(10): 1710-1719. |
[11] | 刘沛林. 从新宅居生活看网络虚拟旅游的前景和方向[J]. 地理科学, 2020, 40(9): 1403-1411. |
[12] | 熊建新, 王文辉, 贺赛花, 尹妍, 唐朝凤. 洞庭湖区旅游城镇化系统耦合协调性时空格局及影响因素[J]. 地理科学, 2020, 40(9): 1532-1542. |
[13] | 朱麟奇, 李秋雨, 刘继生. 中国旅游业与地区发展及民生改善协调关系研究[J]. 地理科学, 2020, 40(8): 1328-1335. |
[14] | 张飞, 杨林生, 何勋, 石勇. 大运河遗产河道游憩利用适宜性评价[J]. 地理科学, 2020, 40(7): 1114-1123. |
[15] | 王新越, 芦雪静. 中国旅游产业集聚空间格局演变及其对旅游经济的影响[J]. 地理科学, 2020, 40(7): 1160-1170. |
|