地理科学 ›› 2020, Vol. 40 ›› Issue (3): 455-465.doi: 10.13249/j.cnki.sgs.2020.03.014
周毅1,2, 王泽涛1,2, 杨锋3
收稿日期:
2019-02-04
修回日期:
2019-06-12
出版日期:
2020-03-10
发布日期:
2020-05-13
作者简介:
周毅(1984-),男,河南南阳人,副教授,博士,主要从事GIS空间分析算法与黄土高原数字地形分析研究。E-mail: zhouyilucky@snnu.edu.cn
基金资助:
Zhou Yi1,2, Wang Zetao1,2, Yang Feng3
Received:
2019-02-04
Revised:
2019-06-12
Online:
2020-03-10
Published:
2020-05-13
Supported by:
摘要:
选用1:10 000高精度5.0 m分辨率的DEM数据,在陕北地区,按黄土地貌演化序列次序,遴选分别代表黄土残塬沟壑、梁状丘陵沟壑、峁状丘陵沟壑地貌的宜君、延安、绥德3个流域,研究其中1 831个沟谷横剖面19个因子的形态特征,利用主成分分析法确立核心因子,分析结果表明:① 沟谷深度、宽度、横剖面面积、宽深比、侵蚀度与不对称性指标的主成分累积贡献率为95.02%,为黄土沟谷横剖面核心指标;② 随级别的增加,3个流域沟谷宽度、横剖面积、宽深比、侵蚀度均呈现总体增加的态势,与黄土地貌发育阶段具有明显的空间耦合性,尤其是宽深比与侵蚀度指标,反映出低级别黄土沟谷溯源侵蚀现象明显,以下切侵蚀为主,而高级别沟谷沟沿线后移,以侧向侵蚀拓宽为主的规律;③ 随级别增加沟谷深度呈现先增后降的态势,并在中级别沟谷出现拐点,与实地调研发现沟谷在中级别下切侵蚀遇到基岩的现象相吻合。
中图分类号:
周毅, 王泽涛, 杨锋. 基于DEM的黄土沟谷横剖面形态特征研究——以宜君、延安、绥德为例[J]. 地理科学, 2020, 40(3): 455-465.
Zhou Yi, Wang Zetao, Yang Feng. Morphological Characteristics of Gully Cross-section in the Loess Region Based DEM: Taking Yijun, Yan’an and Suide as Cases[J]. SCIENTIA GEOGRAPHICA SINICA, 2020, 40(3): 455-465.
表1
研究区3流域基本地理属性"
样区 名称 | 经纬度 | 平均坡度 (°) | 高差 (m) | 沟谷密度 (km/km2) | 面积高程 积分 | 侵蚀模数 [t/(km2·a)] | 地貌类型 |
---|---|---|---|---|---|---|---|
宜君 | 109°18′45″~109°26′15″E, 35°25′00″~35°30′00″N | 20.59 | 334.69 | 2.44 | 0.515 | 2569 | 黄土残塬 |
延安 | 110°18′30″~110°22′00″E, 37°33′00″~37°35′00″N | 29.17 | 337.12 | 7.74 | 0.519 | 8104 | 黄土梁状丘陵沟壑 |
绥德 | 110°15′00″~110°22′30″E, 37°32′30″~37°37′30″N | 29.77 | 319.90 | 9.39 | 0.484 | 8949 | 黄土峁状丘陵沟壑 |
表2
沟谷剖面形态特征参数"
参数 | 参数名称 | 参数计算方式及意义 | 参数 | 参数名称 | 参数计算方式及意义 |
---|---|---|---|---|---|
wt | 沟谷顶部宽 | wt=wl+wr | s | 沟谷横剖侵蚀面积 | s=sl + sr |
w1/4 | 沟谷底部宽 | 1/4最大深度处的宽度 | A | 沟谷横剖面面积 | 沟谷横剖面侵蚀、未侵蚀面积之和 |
wl | 沟谷左侧宽 | 左沟沿线到沟底的水平距离 | sbl | 左侧未被侵蚀面积 | 沟谷左侧未被侵蚀的面积 |
wr | 沟谷右侧宽 | 右沟沿线到沟底的水平距离 | sbr | 右侧未被侵蚀面积 | 沟谷右侧未被侵蚀的面积 |
dr | 沟谷右侧深 | 沟谷右坡与沟沿线的交点 | si | 形状指数 | 描述沟谷形状,si = w1/4/wt |
dl | 沟谷左侧深 | 沟谷左坡与沟沿线的交点 | e | 侵蚀度 | 描述沟谷侵蚀程度, e=s/A |
dg | 沟谷线位置深 | dg=(wl dr+wr dl)/(wr+wl) | rw/d | 宽深比 | 描述侧向侵蚀与下切侵蚀的关系,rw/d = wt/dg |
dm | 沟谷均深 | 沟谷横剖面被侵蚀部分均深 | sa | 面积不对称性 | 描述面积的差异性,sa = sr/sl |
sl | 沟谷左侧面积 | 沟谷左侧被侵蚀的面积 | sw | 宽度不对称性 | 两侧侧向侵蚀差异性,sw = wr/wl |
sr | 沟谷右侧面积 | 沟谷右侧被侵蚀的面积 |
表5
沟谷横剖面指标在前3个主分量所占比重"
参数 | 主分量 | 参数 | 主分量 | ||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | 3 | ||
d1 | 0.424 | 0.763 | -0.185 | Sbr | 0.872 | 0.322 | 0.073 |
dr | 0.733 | 0.618 | 0.095 | S1 | 0.988 | -0.060 | -0.084 |
dm | 0.353 | 0.916 | -0.148 | Sr | 0.985 | 0.023 | 0.079 |
dg | 0.557 | 0.824 | -0.004 | S | 0.996 | -0.012 | 0.011 |
w1 | 0.941 | -0.294 | -0.087 | A | 0.986 | 0.116 | -0.036 |
wr | 0.964 | -0.160 | -0.059 | e | 0.920 | -0.219 | 0.216 |
wt | 0.966 | -0.218 | -0.071 | rw/d | 0.759 | -0.621 | -0.144 |
w1/4 | 0.914 | -0.393 | 0.044 | Sw | 0.137 | 0.178 | 0.948 |
Si | 0.726 | -0.517 | 0.240 | Sa | 0.138 | 0.124 | 0.976 |
Sb1 | 0.868 | 0.118 | -0.381 |
表6
沟谷横剖面量化指标值(dg、wt、s的单位分别为m、m、m2)"
宜君流域 | 延安流域 | 绥德流域 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
级别 | 1级 | 2级 | 3级 | 4级 | 5级 | 1级 | 2级 | 3级 | 4级 | 5级 | 1级 | 2级 | 3级 | 4级 | 5级 | ||
dg | 22 | 40 | 46 | 38 | 42 | 30 | 43 | 39 | 33 | 33 | 25 | 36 | 34 | 34 | 31 | ||
wt | 52 | 102 | 128 | 182 | 196 | 86 | 136 | 142 | 161 | 224 | 75 | 98 | 104 | 114 | 166 | ||
s | 525 | 2027 | 3264 | 4141 | 4279 | 1274 | 3068 | 2822 | 3137 | 4465 | 850 | 1667 | 1754 | 2096 | 3475 | ||
e | 0.36 | 0.44 | 0.49 | 0.54 | 0.48 | 0.40 | 0.45 | 0.44 | 0.51 | 0.54 | 0.39 | 0.42 | 0.45 | 0.46 | 0.56 | ||
rw/d | 2.73 | 2.65 | 2.89 | 4.80 | 4.81 | 3.10 | 3.27 | 3.96 | 4.95 | 7.45 | 3.25 | 2.88 | 3.21 | 3.40 | 5.80 | ||
sw | 0.95 | 1.27 | 1.31 | 1.62 | 1.28 | 1.14 | 0.98 | 0.83 | 0.98 | 0.86 | 1.16 | 1.16 | 1.08 | 1.09 | 1.22 | ||
sa | 1.06 | 1.22 | 1.41 | 1.83 | 1.49 | 1.15 | 0.99 | 0.83 | 1.00 | 0.79 | 1.15 | 1.14 | 1.10 | 1.08 | 1.22 |
[1] | 秦伟, 曹文洪, 左长清 , 等. 考虑沟-坡分异的黄土高原大中流域侵蚀产沙模型[J]. 应用基础与工程科学学报, 2015,23(1):12-29. |
[ Qin Wei, Cao Wenhong , Zuo Changqing et al. Erosion and sediment yield model of big and middle scale watershed in Loess Plateau considering differentiation between upper and lower of the shoulder line of valleys. Journal of Basic Science and Engineering, 2015,23(1):12-29.] | |
[2] |
Ye L, Tan W, Fang Let al. Spatial analysis of soil aggregate stability in a small catchment of the Loess Plateau, China: I. Spatial variability[J]. Soil and Tillage Research, 2018,179:71-81.
doi: 10.1016/j.still.2018.01.012 |
[3] | 严宝文, 王涛, 马耀光 . 黄土高原水蚀沟谷发育阶段研究[J]. 人民黄河, 2004,26(6):16-18. |
[ Yan Baowen, Wang Tao, Ma Yaoguang . Study on development stage of Loess Plateau gully erosion. Yellow River, 2004,26(6):16-18.] | |
[4] | 郑粉莉, 肖培青 , 等. 黄土高原沟蚀演变过程与侵蚀产沙[M]. 北京: 科学出版社, 2010. |
[ Zheng Fenli, Xiao Peiqing et al. Evolution process of gully erosion and sediment yield in the Loess Plateau. Beijing: Science Press, 2010.] | |
[5] | 景可 . 黄土高原沟谷侵蚀研究[J]. 地理科学, 1986,6(4):340-347. |
[ Jing Ke . A study on gully erosion on the Loess Plateau. Scientia Geographica Sinica, 1986,6(4):340-347.] | |
[6] | 励强, 陆中臣, 袁宝印 . 地貌发育阶段的定量研究[J]. 地理学报, 1990,45(1):110-120. |
[ Li Qiang, Lu Zhongchen, Yuan Baoyin . Quantitative study of the stage geomorphological evolution. Acta Geographica Sinica, 1990,45(1):110-120.] | |
[7] | 陆中臣, 周金, 陈浩 . 黄河下游河床纵剖面形态及其地文学意义[J]. 地理研究, 2003,21(1):30-38. |
[ Lu Zhongchen, Zhou Jin, Chen Hao . River bed longitudinal profile morphology of the lower Yellow River and its implication in physiography. Geographical Research, 2003,21(1):30-38.] | |
[8] | Rose C W, Shellberg J G, Brooks A P . Modelling suspended sediment concentration and load in a transport-limited alluvial gully in northern Queensland, Australia[J]. Earth Surface Processes & Landforms, 2015,40(10):1291-1303. |
[9] | Mukai S . Gully erosion rates and analysis of determining factors: a case study from the semi‐arid main ethiopian rift valley[J]. Land Degradation & Development, 2017,28(2):602-615. |
[10] | Giménez R, Marzolff I, Campo M A et al. Accuracy of high-resolution photogrammetric measurements of gullies with contrasting morphology[J]. Earth Surface Processes & Landforms, 2009,34(14):1915-1926. |
[11] |
Gabet E J, Bookter A . A morphometric analysis of gullies scoured by post-fire progressively bulked debris flows in southwest Montana, USA[J]. Geomorphology, 2008,96(s3-4):298-309.
doi: 10.1016/j.geomorph.2007.03.016 |
[12] | Frankl A, Poesen J, Scholiers N et al. Factors controlling the morphology and volume (V) -length (L) relations of permanent gullies in the Northern Ethiopian Highlands[J]. Earth Surface Processes & Landforms, 2013,38(14):1672-1684. |
[13] |
Deng Qingchun, Qin Fachao, Zhang Bin et al. Characterizing the morphology of gully cross-sections based on PCA: A case of Yuanmou Dry-Hot Valley[J]. Geomorphology, 2015,228:703-713.
doi: 10.1016/j.geomorph.2014.10.032 |
[14] | 龚家国, 周祖昊, 贾仰文 , 等. 黄土区浅沟侵蚀沟槽发育及其水流水力学基本特性模拟实验研究[J]. 水土保持学报, 2010,24(5):92-96. |
[ Gong Jiaguo, Zhou Zuhao, Jia Yangwen et al. Simulation experiment of ephemeral gully erosion on basic hydraulics parameters of concentrated flow and erosion morphology in loess area. Journal of Soil and Water Conservation, 2010,24(5):92-96.] | |
[15] | 那嘉明, 杨昕, 李敏 , 等. 黄土高原切沟地貌学研究述评[J]. 地理与地理信息科学, 2016,32(4):68-75. |
[ Na Jiaming, Yang Xin, Li Min et al. Progress in Geomorphology research on young gully in Loess Plateau. Geography and Geo-Information Science, 2016,32(4):68-75.] | |
[16] |
Ferguson R I, Sharma B P, Hodge R A et al. Bed load tracer mobility in a mixed bedrock/alluvial channel[J]. Journal of Geophysical Research: Earth Surface, 2017,122(4):807-822.
doi: 10.1002/2016JF003946 |
[17] | 汤国安, 祝士杰, 李发源 , 等. 基于DEM的黄土高原面积高程积分研究[J]. 地理学报, 2013,68(7):921-932. |
[ Tang Guo’an, Zhu Shijie, Li Fayuan et al. Spatial variation of hypsometric integral in the Loess Plateau based on DEM. Acta Geographica Sinica, 2013,68(7):921-932.] | |
[18] | 王春, 汤国安, 李发源 , 等. 坡谱提取与应用的基本地域条件[J]. 地理科学, 2007,27(4):587-592. |
[ Wang Chun, Tang Guo’an, Li Fayuan et al. Fundamental conditions of slope spectrum abstraction and application. Scientia Geographica Sinica, 2007,27(4):587-592.] | |
[19] |
仝迟鸣, 周成虎, 程维明 , 等. 基于DEM的黄土塬形态特征分析及发育阶段划分[J]. 地理科学进展, 2014,33(1):42-49.
doi: 10.11820/dlkxjz.2014.01.005 |
[ Tong Chiming, Zhou Chenghu, Cheng Weiming et al. Morphological characteristics and developmental stages of loess tablelands based on DEM. Progress in Geography, 2014,33(1):42-49.]
doi: 10.11820/dlkxjz.2014.01.005 |
|
[20] | 田剑, 汤国安, 周毅 , 等. 黄土高原沟谷密度空间分异特征研究[J]. 地理科学, 2013,33(5):622-628. |
[ Tian Jian, Tang Guo’an, Zhou Yi et al. Spatial variation of gully density in the Loess Plateau. Scientia Geographica Sinica, 2013,33(5):622-628.] | |
[21] |
Ziegler M, Loew S, Bahat D . Growth of exfoliation joints and near-surface stress orientations inferred from fractographic markings observed in the upper Aar valley (Swiss Alps)[J]. Tectonophysics, 2014,626:1-20.
doi: 10.1016/j.tecto.2014.03.017 |
[22] |
Prélat A, Pankhania S S, Jackson C A L et al. Slope gradient and lithology as controls on the initiation of submarine slope gullies; Insights from the North Carnarvon Basin, Offshore NW Australia[J]. Sedimentary Geology, 2015,329:12-17.
doi: 10.1016/j.sedgeo.2015.08.009 |
[23] | 周毅, 汤国安, 王春 , 等. 基于高分辨率DEM的黄土地貌正负地形自动分割技术研究[J]. 地理科学, 2010,30(2):261-266. |
[ Zhou Yi, Tang Guoan, Wang Chun et al. Automatic segmentation of loess positive and negative terrains based on high resolution grid DEMs. Scientia Geographica Sinica, 2010,30(2):261-266.] | |
[24] | GB/T 15772-2008, 水土保持综合治理规划通则[S]. 北京:中华人民共和国水利部,2008. |
[ GB/T 15772-2008, Comprehensive control of soil and water conservation—General rule of planning. Beijing: Ministry of Water Resources of the People's Republic of China, 2008.] | |
[25] |
Yang F, Zhou Y . Quantifying spatial scale of positive and negative terrains pattern at watershed-scale: Case in soil and water conservation region on Loess Plateau[J]. Journal of Mountain Science, 2017,14(8):1642-1654.
doi: 10.1007/s11629-016-4227-5 |
[26] |
Lin Jinshi, Huang Yanhe, Wang Mingkuang et al. Assessing the sources of sediment transported in gully systems using a fingerprinting approach: An example from South-east China[J]. Catena, 2015,129:9-17.
doi: 10.1016/j.catena.2015.02.012 |
[27] | 刘晓燕, 刘斌, 杨胜天 . 黄土高塬沟壑区产沙驱动力及减沙潜力分析[J]. 人民黄河, 2014,36(5):1-3. |
[ Liu Xiaoyan, Liu Bin, Yang Shengtian . Driving force of sediment production and potential of sediment reduction in the gullied rolling loess area. Yellow River, 2014,36(5):1-3.] | |
[28] |
Xiong Liyang, Tang Guoan, Li Fayuan et al. Modeling the evolution of loess-covered landforms in the Loess Plateau of China using a DEM of underground bedrock surface[J]. Geomorphology, 2014,209(3):18-26.
doi: 10.1016/j.geomorph.2013.12.009 |
[29] | 熊礼阳, 汤国安, 袁宝印 , 等. 基于DEM的黄土高原(重点流失区)地貌演化的继承性研究[J]. 中国科学: 地球科学, 2014,44(2):313-321. |
[ Xiong Liyang, Tang Guoan, Yuan Baoyin et al. Geomorphological inheritance for loess landform evolution in a severe soil erosion region of Loess Plateau of China based on digital elevation models. Science China: Earth Sciences, 2014,44(2):313-321.] | |
[30] | 严钦尚, 曾昭璇 . 地貌学[M]. 北京: 高等教育出版社, 1985. |
[ Yan Qinshang, Zeng Zhaoxuan. Geomorphology. Beijing: Higher Education Press, 1985.] |
[1] | 吕敏娟, 曹小曙. 黄土高原地区乡村性空间特征及其与可达性格局关系[J]. 地理科学, 2020, 40(2): 248-260. |
[2] | 尤南山, 董金玮, 肖桐, 刘纪远, Xiao Xiangming. 退耕还林还草工程对黄土高原植被总初级生产力的影响[J]. 地理科学, 2020, 40(2): 315-323. |
[3] | 张春华, 李修楠, 吴孟泉, 秦伟山, 张筠. 基于Landsat 8 OLI数据与面向对象分类的昆嵛山地区土地覆盖信息提取[J]. 地理科学, 2018, 38(11): 1904-1913. |
[4] | 刘原峰, 朱国锋, 赵军, 李倩, 胡鹏飞, 王凯, 潘汉雄. 黄土高原区不同降水相态的时空变化[J]. 地理科学, 2016, 36(8): 1227-1233. |
[5] | 李仁杰, 谷枫, 郭风华, 傅学庆. 基于DEM的交通线文化景观感知与功能分段研究——紫荆关长城景观的实证[J]. 地理科学, 2015, 35(9): 1086-1094. |
[6] | 朱红春, 汤国安, 李永胜. 黄土沟谷特征点簇及其空间结构模型研究[J]. 地理科学, 2015, 35(9): 1170-1175. |
[7] | 赵一飞, 邹欣庆, 张勃, 张多勇, 许鑫王豪. 黄土高原甘肃区降水变化与气候指数关系[J]. 地理科学, 2015, 35(10): 1325-1332. |
[8] | 张子龙, 鹿晨昱, 陈兴鹏, 薛冰. 陇东黄土高原农业生态效率的时空演变分析——以庆阳市为例[J]. 地理科学, 2014, 34(4): 472-478. |
[9] | 胡云锋, 徐芝英. 蒙古高原地形与植被指数的特征尺度及多尺度耦合关系[J]. 地理科学, 2014, 34(12): 1511-1517. |
[10] | 李小燕. 黄土高原植被对水热状况的响应研究[J]. 地理科学, 2013, 33(7): 865-872. |
[11] | 田剑, 汤国安, 周毅, 宋效东. 黄土高原沟谷密度空间分异特征研究[J]. 地理科学, 2013, 33(5): 622-628. |
[12] | 刘远, 周买春, 陈芷菁, 李绍文. 基于不同DEM数据源的数字河网提取对比分析——以韩江流域为例[J]. 地理科学, 2012, 32(9): 1112-1118. |
[13] | 胡春生, 潘保田, 苏怀. 黄土高原0.8 Ma以来地面抬升的时空特征研究[J]. 地理科学, 2012, 32(9): 1131-1135. |
[14] | 董进国, 沈川洲, 姜修洋. 黄土高原东缘晚全新世高精度高分辨率石笋古环境记录[J]. 地理科学, 2012, 32(9): 1136-1141. |
[15] | 马士彬, 安裕伦. 基于ASTER GDEM数据喀斯特区域地貌类型划分与分析[J]. 地理科学, 2012, 32(3): 368-373. |
|