地理科学 ›› 2020, Vol. 40 ›› Issue (9): 1543-1552.doi: 10.13249/j.cnki.sgs.2020.09.016
收稿日期:
2019-11-23
出版日期:
2020-09-10
发布日期:
2020-12-05
作者简介:
王波(1987−),男,湖南衡阳人,副教授,硕导,研究方向为城市地理与区域规划、智慧城市研究。E-mail: 基金资助:
Wang Bo1(), Zhen Feng2,3, Sun Honghu2,3
Received:
2019-11-23
Online:
2020-09-10
Published:
2020-12-05
Supported by:
摘要:
暴雨洪涝等小型地域性气候灾害给城市韧性带来挑战。以南京暴雨洪涝为例,通过挖掘新浪微博签到数据,构建公众感知指数和公众情绪指数,分析居民对暴雨洪涝响应的时空格局。在时间维度上,居民对暴雨洪涝的响应主要集中在暴雨洪涝期,并随灾害的严重程度而变化;在暴雨洪涝期内,居民在社交媒体上对暴雨洪涝的响应集中在早、晚高峰。在空间维度上,居民对暴雨洪涝的响应集中在主城区和3个新市区;重要交通基础枢纽地区和低海拔、经历快速城市化的新市区的居民对暴雨洪涝担忧程度更高。时空分析表明,暴雨洪涝对居民的交通出行影响最明显。基于时空间分析,最后从硬件和软件设施上为提升暴雨洪涝的城市韧性提供相关政策建议。
中图分类号:
王波, 甄峰, 孙鸿鹄. 基于社交媒体签到数据的城市居民暴雨洪涝响应时空分析[J]. 地理科学, 2020, 40(9): 1543-1552.
Wang Bo, Zhen Feng, Sun Honghu. The Spatio-temporal Patterns of Public Responses Towards Rainstorms and Associated Floods Based on Social Media Check-in Data[J]. SCIENTIA GEOGRAPHICA SINICA, 2020, 40(9): 1543-1552.
表 2
南京市暴雨洪涝期居民响应的日内变化"
指标 | 地区* | 0~2 | 2~4 | 4~6 | 6~8 | 8~10 | 10~12 | 12~14 | 14~16 | 16~18 | 18~20 | 20~22 | 22~24 |
公众感知指数(%) | A | 5.6 | 4.0 | 2.6 | 10.1 | 12.9 | 9.5 | 8.3 | 7.4 | 10.5 | 9.1 | 7.0 | 6.1 |
B | 5.1 | 3.7 | 2.4 | 8.9 | 12.9 | 8.6 | 7.1 | 6.4 | 9.9 | 8.3 | 6.5 | 5.8 | |
C | 6.0 | 4.2 | 2.7 | 11.5 | 13.4 | 10.4 | 9.1 | 8.7 | 10.7 | 9.6 | 7.5 | 6.1 | |
D | 5.2 | 4.3 | 3.0 | 10.8 | 12.2 | 10.2 | 8.5 | 7.4 | 10.1 | 8.0 | 7.3 | 6.3 | |
E | 5.7 | 4.0 | 2.5 | 11.6 | 12.5 | 10.0 | 9.2 | 8.3 | 10.6 | 9.0 | 7.0 | 5.8 | |
F | 5.7 | 3.7 | 2.3 | 10.1 | 11.4 | 8.8 | 8.0 | 8.1 | 9.5 | 8.6 | 6.9 | 5.6 | |
公众情绪指数# | A | ?0.14 | ? | ? | ?0.14 | ?0.22 | ?0.13 | ?0.10 | ?0.11 | ?0.10 | ?0.15 | ?0.14 | ?0.10 |
B | ?0.09 | ? | ? | ?0.09 | ?0.18 | ?0.10 | ?0.06 | ?0.08 | ?0.09 | ?0.09 | ?0.08 | ?0.07 | |
C | ?0.18 | ? | ? | ?0.23 | ?0.26 | ?0.17 | ?0.16 | ?0.16 | ?0.13 | ?0.24 | ?0.19 | ?0.12 | |
D | ?0.11 | ? | ? | ?0.13 | ?0.16 | ?0.11 | ?0.09 | ?0.09 | ?0.08 | ?0.11 | ?0.11 | ?0.11 | |
E | ?0.17 | ? | ? | ?0.21 | ?0.28 | ?0.20 | ?0.15 | ?0.14 | ?0.14 | ?0.18 | ?0.18 | ?0.11 | |
F | ?0.13 | ? | ? | ?0.16 | ?0.21 | ?0.11 | ?0.11 | ?0.11 | ?0.09 | ?0.14 | ?0.14 | ?0.10 |
[1] |
Adger W N, Hughes T P, Folke C et al Social-ecological resilience to coastal disasters[J]. Science, 2005. 309 (5737): 1036- 1039.
doi: 10.1126/science.1112122 |
[2] | 孙鸿鹄, 甄峰 居民活动视角的城市雾霾灾害韧性评估——以南京主城区为例[J]. 地理科学, 2019. 39 (5): 788- 796. |
Sun Honghu, Zhen Feng Evaluation of urban haze disaster resilience from the perspective of residents’ activity: A case study of the main urban area of Nanjing city[J]. Scientia Geographica Sinica, 2019. 39 (5): 788- 796. | |
[3] | Gu D, Gerland P, Pelletier F et al. Risks of exposure and vulnerability to natural disasters at the city level: A global overview[C]. New York: United Nations Technical Paper, 2015. |
[4] | Meerow S, Newell J P, Stults M Defining urban resilience: A review[J]. Landscape and Urban Planning, 2016. (147): 38- 49. |
[5] | Alexander D E. Principles of emergency panning and management[M]. Oxford: Oxford University Press, 2002. |
[6] |
Burton C G A validation of metrics for community resilience to natural hazards and disasters using the recovery from Hurricane Katrina as a case study[J]. Annals of the Association of American Geographers, 2015. 105 (1): 67- 86.
doi: 10.1080/00045608.2014.960039 |
[7] | Yi H, Yang J Research trends of post disaster reconstruction: The past and the future[J]. Habitat International, 2014. (42): 21- 29. |
[8] |
Wang Y, Wang T, Ye X et al Using social media for emergency response and urban sustainability: A case study of the 2012 Beijing rainstorm[J]. Sustainability, 2015. 8 (1): 25.
doi: 10.3390/su8010025 |
[9] | Chae J, Thom D, Jang Y et al Public behavior response analysis in disaster events utilizing visual analytics of microblog data[J]. Computers & Graphics, 2014. (38): 51- 60. |
[10] |
Wang Z, Ye X Social media analytics for natural disaster management[J]. International Journal of Geographical Information Science, 2018. 32 (1): 49- 72.
doi: 10.1080/13658816.2017.1367003 |
[11] |
Zou L, Lam N S, Cai H et al Mining Twitter data for improved understanding of disaster resilience[J]. Annals of the American Association of Geographers, 2018. 108 (5): 1422- 1441.
doi: 10.1080/24694452.2017.1421897 |
[12] |
Burningham K, Fielding J, Thrush D ‘It'll never happen to me’: Understanding public awareness of local flood risk[J]. Disasters, 2008. 32 (2): 216- 238.
doi: 10.1111/j.1467-7717.2007.01036.x |
[13] | Chelleri L, Schuetze T, Salvati L Integrating resilience with urban sustainability in neglected neighborhoods: Challenges and opportunities of transitioning to decentralized water management in Mexico City[J]. Habitat International, 2015. (48): 122- 130. |
[14] |
Grothmann T, Reusswig F People at risk of flooding: Why some residents take precautionary action while others do not[J]. Natural Hazards, 2006. 38 (1-2): 101- 120.
doi: 10.1007/s11069-005-8604-6 |
[15] |
Cutter S L, Barnes L, Berry M, et al A place-based model for understanding community resilience to natural disasters[J]. Global Environmental Change, 2008. 18 (4): 598- 606.
doi: 10.1016/j.gloenvcha.2008.07.013 |
[16] | 王波, 甄峰 城市实体特征对城市网络空间影响力的作用机制——基于互联网新闻媒体的分析[J]. 地理科学, 2019. 39 (5): 1127- 11344. |
Wang Bo, Zhen Feng Impacts of city’s characteristics on city’s importance in the virtual world: An empirical analysis based on internet news media[J]. Scientia Geographica Sinica, 2019. 39 (5): 1127- 11344. | |
[17] |
Huang Q, Xiao Y Geographic situational awareness: mining tweets for disaster preparedness, emergency response, impact, and recovery[J]. ISPRS International Journal of Geo-Information, 2015. 4 (3): 1549- 1568.
doi: 10.3390/ijgi4031549 |
[18] |
甄峰, 王波 “大数据”热潮下人文地理学研究的再思考[J]. 地理研究, 2015. 34 (5): 803- 811.
doi: 10.11821/dlyj201505001 |
Zhen Feng, Wang Bo Rethinking human geography in the age of big data[J]. Geographical Research, 2015. 34 (5): 803- 811.
doi: 10.11821/dlyj201505001 |
|
[19] |
Goodchild M F Citizens as sensors: the world of volunteered geography[J]. GeoJournal, 2007. 69 (4): 211- 221.
doi: 10.1007/s10708-007-9111-y |
[20] |
Liu Y, Liu X, Gao S, et al Social sensing: A new approach to understanding our socioeconomic environments[J]. Annals of the Association of American Geographers, 2015. 105 (3): 512- 530.
doi: 10.1080/00045608.2015.1018773 |
[21] | 王波, 甄峰, 张浩 基于签到数据的城市活动时空间动态变化及区划研究[J]. 地理科学, 2015. 35 (2): 151- 160. |
Wang Bo, Zhen Feng, Zhang Hao The dynamic changes of urban space-time activity and activity zoning based on check-in data in Sina Web[J]. Scientia Geographica Sinica, 2015. 35 (2): 151- 160. | |
[22] |
Wang B, Zhen F, Wei Z et al A theoretical framework and methodology for urban activity spatial structure in e-society: Empirical evidence for Nanjing City, China[J]. Chinese Geographical Science, 2015. 25 (6): 672- 683.
doi: 10.1007/s11769-015-0751-4 |
[23] | 王波, 甄峰 南京市区活动空间总体特征研究——基于大数据的实证分析[J]. 人文地理, 2014. 29 (3): 14- 21, 55. |
Wang Bo, Zhen Feng The research on characteristics of urban activity space in Nanjing: An empirical analysis based on big data[J]. Human Geography, 2014. 29 (3): 14- 21, 55. | |
[24] |
Kent J D, Capello J H T Spatial patterns and demographic indicators of effective social media content during the Horsethief Canyon fire of 2012[J]. Cartography and Geographic Information Science, 2013. 40 (2): 78- 89.
doi: 10.1080/15230406.2013.776727 |
[25] | Neppalli V K, Caragea C, Squicciarini A, et al Sentiment analysis during Hurricane Sandy in emergency response[J]. International Journal of Disaster Risk Reduction, 2017. (21): 213- 222. |
[26] |
Cheng T, Wicks T Event detection using Twitter: A spatio-temporal approach[J]. PloS One, 2014. 9 (6): e97807.
doi: 10.1371/journal.pone.0097807 |
[27] |
Yin J, Lampert A, Cameron M et al Using social media to enhance emergency situation awareness[J]. IEEE Intelligent Systems, 2012. 27 (6): 52- 59.
doi: 10.1109/MIS.2012.6 |
[28] |
Kryvasheyeu Y, Chen H, Obradovich N, et al Rapid assessment of disaster damage using social media activity[J]. Science Advances, 2016. 2 (3): e1500779.
doi: 10.1126/sciadv.1500779 |
[29] | Yenneti K, Tripathi S, Wei Y D et al The truly disadvantaged? Assessing social vulnerability to climate change in urban India[J]. Habitat International, 2016. (56): 124- 135. |
[30] | United Nations International for Disaster Reduction. 2009 Global Assessment Report on Disaster Risk Reduction: Risk and poverty in a changing climate: Invest today for a safer tomorrow[M]. New York: United Nations, 2009. |
[31] |
Chan F K S, Griffiths J A, Higgitt D et al “Sponge City” in China—A breakthrough of planning and flood risk management in the urban context[J]. Land Use Policy, 2018. 76, 772- 778.
doi: 10.1016/j.landusepol.2018.03.005 |
[32] |
王波, 甄峰 南京市区就业空间布局研究[J]. 人文地理, 2011. 26 (4): 58- 65.
doi: 10.3969/j.issn.1003-2398.2011.04.011 |
Wang Bo, Zhen Feng An analysis of spatial distribution of urban employment in Nanjing[J]. Human Geography, 2011. 26 (4): 58- 65.
doi: 10.3969/j.issn.1003-2398.2011.04.011 |
|
[33] |
甄峰, 王波, 陈映雪 基于网络社会空间的中国城市网络特征——以新浪微博为例[J]. 地理学报, 2012. 67 (8): 1031- 1043.
doi: 10.11821/xb201208003 |
Zhen Feng, Wang Bo, Chen Yingxue China’s city network characteristics based on social network space: An empirical analysis of Sina micro-blog[J]. Acta Geographica Sinica, 2012. 67 (8): 1031- 1043.
doi: 10.11821/xb201208003 |
|
[34] |
Wu C, Ye X, Ren F et al Check-in behaviour and spatio-temporal vibrancy: An exploratory analysis in Shenzhen, China[J]. Cities, 2018. 77, 104- 116.
doi: 10.1016/j.cities.2018.01.017 |
[35] | 王波, 甄峰, 席广亮, 等 基于新浪微博用户关系的网络信息地理研究——以新浪微博为例[J]. 地理研究, 2013. 32 (2): 380- 391. |
Wang Bo, Zhen Feng, Xi Guangliang et al A study of cybergeography based on micro-blog users’ relationship: With a case of Sina micro-blog[J]. Geographical Research, 2013. 32 (2): 380- 391. | |
[36] | Wang B, Zhen F, Qin X et al. GIS based social spatial behavior studies: A case study in Nanjing University utilizing mobile data[M]//Comprehensive Geographic Information Systems, 2017: 320-329. |
[37] |
Zhen F, Cao Y, Qin X et al Delineation of an urban agglomeration boundary based on Sina Weibo microblog ‘check-in’data: A case study of the Yangtze River Delta[J]. Cities, 2017. 60, 180- 191.
doi: 10.1016/j.cities.2016.08.014 |
[38] |
Yan L, Duarte F, Wang D et al Exploring the effect of air pollution on social activity in China using geotagged social media check-in data[J]. Cities, 2019. 91, 116- 125.
doi: 10.1016/j.cities.2018.11.011 |
[39] |
Zhou X, Yeh A G, Li W et al A commuting spectrum analysis of the jobs–housing balance and self-containment of employment with mobile phone location big data[J]. Environment and Planning B: Urban Analytics and City Science, 2018. 45 (3): 434- 451.
doi: 10.1177/2399808317707967 |
[40] |
Wang B, Zhen F, Loo B P Y The role of distance in online social networks: A case study of urban residents in Nanjing, China[J]. Cities, 2018. 79, 37- 44.
doi: 10.1016/j.cities.2018.02.020 |
[1] | 张景奇, 史文宝, 修春亮. POI数据在中国城市研究中的应用[J]. 地理科学, 2021, 41(1): 140-148. |
[2] | 薛冰, 肖骁, 李京忠, 谢潇. 基于兴趣点(POI)大数据的东北城市空间结构分析[J]. 地理科学, 2020, 40(5): 691-700. |
[3] | 丁亮, 钮心毅, 施澄. 基于一致性标准的大城市多中心体系规划实施评估——以杭州为例[J]. 地理科学, 2020, 40(2): 211-219. |
[4] | 陈晓红, 娄金男, 王颖. 哈长城市群城市韧性的时空格局演变及动态模拟研究[J]. 地理科学, 2020, 40(12): 2000-2009. |
[5] | 塔娜, 曾屿恬, 朱秋宇, 吴佳雨. 基于大数据的上海中心城区建成环境与城市活力关系分析[J]. 地理科学, 2020, 40(1): 60-68. |
[6] | 张伟丽, 叶信岳, 李栋, 傅继彬, 吴梦荷. 网络关联、空间溢出效应与中国区域经济增长——基于腾讯位置大数据的研究[J]. 地理科学, 2019, 39(9): 1371-1377. |
[7] | 刘俊, 王胜宏, 金朦朦, 李宁馨. 基于微博大数据的2010~2018年中国桃花观赏日期时空格局研究[J]. 地理科学, 2019, 39(9): 1446-1454. |
[8] | 孙鸿鹄, 甄峰. 居民活动视角的城市雾霾灾害韧性评估——以南京市主城区为例[J]. 地理科学, 2019, 39(5): 788-796. |
[9] | 薛冰, 肖骁, 李京忠, 谢潇, 逯承鹏, 任婉侠. 基于POI大数据的沈阳市住宅与零售业空间关联分析[J]. 地理科学, 2019, 39(3): 442-449. |
[10] | 王新越, 曹婵婵. 基于网络游记的青岛市国内旅游客源市场结构与旅游流时空特征分析[J]. 地理科学, 2019, 39(12): 1919-1928. |
[11] | 顾秋实, 张海平, 陈旻, 谢毅. 基于手机信令数据的南京市旅游客源地网络层级结构及区域分异研究[J]. 地理科学, 2019, 39(11): 1739-1748. |
[12] | 罗桑扎西, 甄峰, 尹秋怡. 城市公共自行车使用与建成环境的关系研究——以南京市桥北片区为例[J]. 地理科学, 2018, 38(3): 332-341. |
[13] | 张晓瑞, 华茜, 程志刚. 基于空间句法和LBS大数据的合肥市人口分布空间格局研究[J]. 地理科学, 2018, 38(11): 1809-1816. |
[14] | 廖伟华, 聂鑫. 基于大数据的城市服务业空间关联分析[J]. 地理科学, 2017, 37(9): 1310-1317. |
[15] | 王波, 甄峰. 城市实体特征对城市网络空间影响力的作用机制——基于互联网新闻媒体的分析[J]. 地理科学, 2017, 37(8): 1127-1134. |
|