地理科学 ›› 2020, Vol. 40 ›› Issue (10): 1679-1687.doi: 10.13249/j.cnki.sgs.2020.10.012
陈玉洁1(), 袁媛1,2,*(
), 周钰荃1, 刘晔1,2
收稿日期:
2019-07-26
出版日期:
2020-10-10
发布日期:
2020-12-05
通讯作者:
袁媛
E-mail:chenyj266@mail2.sysu.edu.cn;yyuanah@163.com
作者简介:
陈玉洁(1992−),女,山东滨州人,博士研究生,主要研究方向为城市地理、健康地理与健康社区。E-mail: 基金资助:
Chen Yujie1(), Yuan Yuan1,2,*(
), Zhou Yuquan1, Liu Ye1,2
Received:
2019-07-26
Online:
2020-10-10
Published:
2020-12-05
Contact:
Yuan Yuan
E-mail:chenyj266@mail2.sysu.edu.cn;yyuanah@163.com
Supported by:
摘要:
利用2018年广州社区问卷数据、遥感影像、城市街景、环境污染等多元数据,提取多种蓝绿空间指标,并使用多层模型、中介效应模型和倾向值匹配法,探讨中国城市背景下蓝绿空间暴露影响老年人健康的“生物?心理?社会”邻里影响路径和机制,以及对不同社会阶层间的差异。研究发现,社区层面的蓝绿空间暴露与老年人的身心健康均存在显著相关;周围蓝绿空间程度通过促进体育锻炼、缓解压力提升老年人的身体健康,可达性通过促进社会交往提升老年人的心理健康;蓝绿空间暴露对老年人健康的影响在不同阶层间存在差异。为健康老龄化、健康城市建设提供科学参考。
中图分类号:
陈玉洁, 袁媛, 周钰荃, 刘晔. 蓝绿空间暴露对老年人健康的邻里影响[J]. 地理科学, 2020, 40(10): 1679-1687.
Chen Yujie, Yuan Yuan, Zhou Yuquan, Liu Ye. The Neighborhood Effect of Exposure to Green and Blue Space on the Elderly’s Health: A Case Study of Guangzhou, China[J]. SCIENTIA GEOGRAPHICA SINICA, 2020, 40(10): 1679-1687.
表 2
蓝绿空间暴露对老年人中介变量的效应"
模型1a因变量:环境污染 | 模型1b因变量:压力 | 模型1c因变量:审美愉悦 | 模型1d因变量:健身时长 | 模型1e因变量:社会交往 | ||||||||||
系数 | S.E | 系数 | S.E | 系数 | S.E | 系数 | S.E | 系数 | S.E | |||||
NDVI | 1.252** | 0.634 | ?0.221 | 0.332 | ?2.052*** | 0.658 | 0.039 | 0.328 | ?0.689 | 0.831 | ||||
GVI | ?0.079 | 0.276 | ?0.124 | 0.219 | ?0.217 | 0.393 | 0.497** | 0.209 | 0.522 | 0.508 | ||||
斑块分离度 | 0.329 | 0.429 | ?0.140 | 0.271 | ?0.882 | 0.564 | 0.203 | 0.447 | ?1.335* | 0.678 | ||||
最近公园距离 | 0.739 | 0.527 | 0.355 | 0.341 | 0.714 | 0.791 | 0.451 | 0.337 | ?0.265*** | 0.853 | ||||
NDWI | 1.005* | 0.558 | 0.719* | 0.441 | ?1.346 | 0.841 | ?0.156 | 0.434 | 1.586 | 1.088 | ||||
最近水体距离 | 0.470 | 0.452 | ?0.283 | 0.296 | ?1.445** | 0.625 | ?0.005 | 0.302 | ?1.031 | 0.799 |
表 3
蓝绿空间暴露对老年人健康影响中介效应检验系数"
模型1 因变量: 自评健康 | 模型3 因变量: 心理健康 | 模型2a | 模型3a | 模型2b | 模型3b | 模型2c | 模型3c | 模型2d | 模型3d | 模型2e | 模型3e | |
中介变量 | ||||||||||||
环境污染 | 环境污染 | 压力 | 压力 | 审美愉悦 | 审美愉悦 | 健身时长 | 健身时长 | 社会交往 | 社会交往 | |||
NDVI | 0.240 | 0.170 | ?0.031 | ?0.579 | ?0.122 | ?0.280 | 0.091 | 0.204 | 0.131 | 0.188 | 0.276 | 0.302 |
GVI | 0.549** | 0.271 | 0.446* | 0.624 | 0.496*** | 0.060 | ?0.545* | 0.105 | 0.494** | 0.201 | 0.555** | 0.249 |
斑块分离度 | 0.280 | 0.361 | 0.560 | 0.155 | 0.216 | 0.106 | 0.160 | 0.394 | 0.275 | 0.337 | 0.322 | 0.546 |
最近公园距离 | ?0.023 | ?1.345* | ?0.222 | ?1.484 | 0.141 | ?0.675* | ?0.278 | ?2.601** | ?0.243 | ?1.397* | 0.068 | ?0.944* |
NDWI | 0.962** | ?0.686 | 0.721 | 0.032 | 0.593* | 0.741 | ?0.593 | 0.140 | 0.952** | ?0.708 | 1.004** | ?0.829 |
最近水体距离 | ?0.022 | ?0.069 | ?0.055 | ?0.421 | ?0154 | ?0.462 | 0.050 | 0.332 | ?0.072 | 0.082 | 0.018 | 0.246 |
环境污染 | ?0.084** | ?0.335*** | ||||||||||
压力 | ?0.469*** | ?1.902*** | ||||||||||
审美愉悦 | 0.033 | 0.208*** | ||||||||||
健身时长 | 0.123*** | 0.140 | ||||||||||
社会交往 | 0.039* | 0.171*** | ||||||||||
组内方差 | 1.002 | 2.510 | 0.691 | 0.872 | 1.090 | 3.05 | 0.623 | 5.992 | 0.462 | 1.014 | 0.352 | 1.346 |
组间方差 | 3.824 | 13.966 | 3.785 | 13.407 | 3.219 | 14.005 | 3.729 | 14.126 | 3.810 | 13.940 | 3.813 | 13.739 |
对数似然比 | ?2013.497 | ?2639.129 | ?1664.093 | ?2172.625 | ?1930.232 | ?2035.833 | ?1347.540 | ?1780.348 | ?2009.378 | ?2637.870 | ?2012.110 | ?2631.977 |
AIC | 4080.809 | 5331.014 | 3384.867 | 4399.424 | 3916.704 | 4127.399 | 2754.040 | 3619.844 | 4079.250 | 5330.603 | 4080.053 | 5318.583 |
表 4
蓝绿空间暴露对不同收入群体健康影响的分层分析"
分层 | NDVI | GVI | 斑块分离度 | 最近公园距离 | NDWI | 最近水体距离 | ||
模型4a(自评健康) | 年龄 | 60~75岁 | 0.393 | 0.545** | 0.505 | 0.260 | 1.708*** | ?0.063 |
>75岁 | ?0.837 | ?0.281 | ?0.895 | 0.623 | ?0.992 | ?1.510* | ||
性别 | 男 | 0.966* | ?0.121 | 0.078 | 0.541 | 2.446*** | 0.136 | |
女 | 0.959* | ?0.586* | 0.192 | ?0.076 | ?0.238 | ?0.819** | ||
收入 | ≤3000元 | 0.097 | ?0.084 | ?0.144 | 0.318 | ?0.389 | ?0.774 | |
>3000元 | 1.176* | ?0.915*** | 0.598 | ?0.548 | ?1.686** | 0.416 | ||
模型4b(心理健康) | 年龄 | 60~75岁 | 0.227 | 0.510 | 0.954 | ?0.507 | ?1.894 | ?0.024 |
>75岁 | ?3.044** | ?0.702 | ?2.395** | ?0.663 | 2.177 | ?3.287** | ||
性别 | 男 | 0.739 | 0.711 | 0.728 | ?0.676 | 3.684** | 0.179 | |
女 | ?1.648 | 0.017 | ?0.307 | ?0.515 | 0.012 | ?1.334 | ||
收入 | ≤3000元 | 1.476* | ?0.853 | 0.129 | ?1.824** | ?0.105 | ?1.191 | |
>3000元 | 2.430** | 0.552 | 0.691 | ?0.512 | ?2.759** | 0.987 |
[1] |
Ellen I G, Mijanovich T, Dillman K N Neighborhood effects on health: Exploring the links and assessing the evidence[J]. Journal of Urban Affairs, 2001. 23 (3-4): 391- 408.
doi: 10.1111/0735-2166.00096 |
[2] | Nutsford D, Pearson A L, Kingham S et al Residential exposure to visible blue space (but not green space) associated with lower psychological distress in a capital city[J]. Health & Place, 2016. 39, 70- 78. |
[3] | Maas J, Verheij R A, Groenewegen P P et al Green space, urbanity, and health: How strong is the relation?[J]. Journal of Epidemiology & Community Health, 2006. 60 (7): 587- 592. |
[4] | Wheeler B W, White M, Stahl-Timmins W et al Does living by the coast improve health and wellbeing?[J]. Health & Place, 2012. 18 (5): 1198- 1201. |
[5] |
Paquet C, Orschulok T P, Coffee N T et al Are accessibility and characteristics of public open spaces associated with a better cardiometabolic health?[J]. Landscape and Urban Planning, 2013. 118, 70- 78.
doi: 10.1016/j.landurbplan.2012.11.011 |
[6] | Kern J, Polašek O, Musić Milanović S et al Regional pattern of cardiovascular risk burden in Croatia[J]. Collegium Antropologicum, 2009. 33 (1): 11- 17. |
[7] |
Gascon M, Zijlema W, Vert C et al Outdoor blue spaces, human health and well-being: a systematic review of quantitative studies[J]. International Journal of Hygiene and Environmental Health, 2017. 220 (8): 1207- 1221.
doi: 10.1016/j.ijheh.2017.08.004 |
[8] |
Witten K, Hiscock R, Pearce J et al Neighbourhood access to open spaces and the physical activity of residents: A national study[J]. Preventive Medicine, 2008. 47 (3): 299- 303.
doi: 10.1016/j.ypmed.2008.04.010 |
[9] |
Gascon M, Triguero Mas M, Martínez D et al Mental health benefits of long-term exposure to residential green and blue spaces: Asystematic review[J]. International journal of Environmental Research and Public Health, 2015. 12 (4): 4354- 4379.
doi: 10.3390/ijerph120404354 |
[10] |
De Bell S, Graham H, Jarvis S et al The importance of nature in mediating social and psychological benefits associated with visits to freshwater blue space[J]. Landscape and Urban Planning, 2017. 167, 118- 127.
doi: 10.1016/j.landurbplan.2017.06.003 |
[11] |
Dadvand P, Sunyer J, Basagana X et al Surrounding greenness and pregnancy outcomes in four Spanish birth cohorts[J]. Environmental Health Perspectives, 2012. 120 (10): 1481- 1487.
doi: 10.1289/ehp.1205244 |
[12] |
Markevych I, Schoierer J, Hartig T et al Exploring pathways linking greenspace to health: Theoretical and methodological guidance[J]. Environmental Research, 2017. 158, 301- 317.
doi: 10.1016/j.envres.2017.06.028 |
[13] | Garrett J K, White M P, Huang J et al Urban blue space and health and wellbeing in Hong Kong: Results from a survey of older adults[J]. Health & Place, 2019. 55, 100- 110. |
[14] |
Jiang B, Chang C Y, Sullivan W C A dose of nature: Tree cover, stress reduction, and gender differences[J]. Landscape and Urban Planning, 2014. 132, 26- 36.
doi: 10.1016/j.landurbplan.2014.08.005 |
[15] |
Gascon M, Sánchez Benavides G, Dadvand P et al Long-term exposure to residential green and blue spaces and anxiety and depression in adults: A cross-sectional study[J]. Environmental Research, 2018. 162, 231- 239.
doi: 10.1016/j.envres.2018.01.012 |
[16] |
Lachowycz K, Jones A P Towards a better understanding of the relationship between greenspace and health: Development of a theoretical framework[J]. Landscape and Urban Planning, 2013. 118, 62- 69.
doi: 10.1016/j.landurbplan.2012.10.012 |
[17] |
Völker S, Kistemann T The impact of blue space on human health and well-being-Salutogenetic health effects of inland surface waters: A review[J]. International Journal of Hygiene and Environmental Health, 2011. 214 (6): 449- 460.
doi: 10.1016/j.ijheh.2011.05.001 |
[18] |
Pietilä M, Neuvonen M, Borodulin K et al Relationships between exposure to urban green spaces, physical activity and self-rated health[J]. Journal of Outdoor Recreation and Tourism, 2015. 10, 44- 54.
doi: 10.1016/j.jort.2015.06.006 |
[19] | Maas J, Van Dillen S M E, Verheij R A et al Social contacts as a possible mechanism behind the relation between green space and health[J]. Health & Place, 2009. 15 (2): 586- 595. |
[20] |
Astell Burt T, Mitchell R, Hartig T The association between green space and mental health varies across the lifecourse. A longitudinal study[J]. J Epidemiol Community Health, 2014. 68 (6): 578- 583.
doi: 10.1136/jech-2013-203767 |
[21] | 姜玉培, 甄峰, 赵梦妮, 等 城市居民日常身体活动时空分异特征及影响因素[J]. 地理科学, 2019. 39 (9): 1496- 1506. |
Jiang Yupei, Zhen Feng, Zhao Mengni et al Characteristics of spatio-temporal difference and influencing factors of urban resident's daily physical activity[J]. Scientia Geographica Sinica, 2019. 39 (9): 1496- 1506. | |
[22] | 张延吉, 陈小辉, 赵立珍, 等 城市建成环境对居民体力活动的影响——以福州市的经验研究为例[J]. 地理科学, 2019. 39 (5): 779- 787. |
Zhang Yanji, Chen Xiaohui, Zhao Lizhen et al The impact of urban built environment on residents’physical activity: Based on the empirical research in Fuzhou City[J]. Scientia Geographica Sinica, 2019. 39 (5): 779- 787. | |
[23] | 杨振, 丁启燕, 王念, 等 中国人口健康脆弱性地区差异与影响因素分析[J]. 地理科学, 2018. 38 (1): 135- 142. |
Yang Zhen, Ding Qiyan, Wang Nian et al Distribution characteristics of health vulnerability and its influence factors in China[J]. Scientia Geographica Sinica, 2018. 38 (1): 135- 142. | |
[24] | 齐兰兰, 周素红 邻里建成环境对居民外出型休闲活动时空差异的影响——以广州市为例[J]. 地理科学, 2018. 38 (1): 31- 40. |
Qi Lanlan, Zhou Suhong The influence of neighborhood built environments on the spatial-temporal characteristics of residents’daily leisure activities: A case study of Guangzhou[J]. Scientia Geographica Sinica, 2018. 38 (1): 31- 40. | |
[25] |
曾毅, 顾大男, Jama Purser, 等 社会、经济与环境因素对老年健康和死亡的影响——基于中国22省份的抽样调查[J]. 中国卫生政策研究, 2014. 7 (6): 53- 62.
doi: 10.3969/j.issn.1674-2982.2014.06.010 |
Zeng Yi, Gu Danan, Jama Purser et al Associations of environmental factors with health and mortality among Chinese elderly: A sample survey in 22 provinces in China[J]. Chinese Journal of Health Policy, 2014. 7 (6): 53- 62.
doi: 10.3969/j.issn.1674-2982.2014.06.010 |
|
[26] | 杜本峰, 王旋 老年人健康不平等的演化、区域差异与影响因素分析[J]. 人口研究, 2013. 37 (5): 81- 90. |
Du Benfeng, Wang Xuan Health inequality among the Chinese elderly: Changes, regional disparities and determinants[J]. Population Research, 2013. 37 (5): 81- 90. | |
[27] | 林琳, 郝珊, 杨莹, 等 老年人自评健康的能力−压力模型研究——以广州社区为例[J]. 地理科学, 2018. 38 (4): 548- 556. |
Lin Lin, Hao Shan, Yang Ying et al Self-rated health of the elderly based on the competence-press model: A case study on Guangzhou typical communities[J]. Scientia Geographica Sinica, 2018. 38 (4): 548- 556. | |
[28] |
郑振华, 彭希哲 社区环境对老年人行为与健康的影响研究——不同年龄阶段老年人的群组比较[J]. 地理研究, 2019. 38 (6): 1481- 1496.
doi: 10.11821/dlyj020181142 |
Zheng Zhenhua, Peng Xizhe The impact of community environment on behavior and health of the elderly: Group comparison of different ages[J]. Geographical Research, 2019. 38 (6): 1481- 1496.
doi: 10.11821/dlyj020181142 |
|
[29] |
Ying Z, Ning L D, Xin L Relationship between built environment, physical activity, adiposity, and health in adults aged 46-80 in Shanghai, China[J]. Journal of Physical Activity and Health, 2015. 12 (4): 569- 578.
doi: 10.1123/jpah.2013-0126 |
[30] |
Helbich M, Yao Y, Liu Y et al Using deep learning to examine street view green and blue spaces and their associations with geriatric depression in Beijing, China[J]. Environment international, 2019. 126, 107- 117.
doi: 10.1016/j.envint.2019.02.013 |
[31] | Gelman A, Hill J. Data analysis using regression and multilevel/hierarchical models[M]. Cambridge U. K.:Cambridge University Press, 2006. |
[32] | 温忠麟,叶宝娟.中介效应分析:方法和模型发展[J].心理科学进展,2014,22(5):731-745. |
Wen Zhonglin, Ye Baojuan. Analyses of mediating effects: The development of methods and models. Advances in Psychological Science, 2014,22(5):731-745. | |
[33] | Dehejia R H, Wahba S. Propensity score-matching methods for nonexperimental causal studies[J]. Review of Economics and Statistics, 2002, 84(1): 151–161. |
[34] | 张延吉,秦波,唐杰.基于倾向值匹配法的城市建成环境对居民生理健康的影响[J].地理学报,2018,73(2):333-345. |
Zhang Yanji, Qin Bo, Tang Jie. The impact of urban built environment on residential physical health: Based on propensity score matching. Acta Geographica Sinca, 2018, 73(2):333-345. |
[1] | 童磊, 郑珂, 苏飞, 汤青, 曹轶蓉, 郑艳艳. 浙江省人口健康脆弱性评估及影响因素分析[J]. 地理科学, 2020, 40(8): 1293-1299. |
[2] | 姜玉培, 甄峰, 赵梦妮, 曹晨. 城市居民日常身体活动时空分异特征及影响因素[J]. 地理科学, 2019, 39(9): 1496-1506. |
[3] | 王利, 刘万波, 赵东霞, 韩增林, 黄馨慧. 东北地区县域老年人口高龄化空间分异特征及驱动因素研究[J]. 地理科学, 2019, 39(2): 267-276. |
[4] | 曹阳, 甄峰, 姜玉培. 基于活动视角的城市建成环境与居民健康关系研究框架[J]. 地理科学, 2019, 39(10): 1612-1620. |
[5] | 马慧强, 论宇超, 席建超, 葛全胜. 中国旅游经济系统失配度空间格局分异与形成机理分析[J]. 地理科学, 2018, 38(8): 1328-1336. |
[6] | 林琳, 郝珊, 杨莹, 钟志平, 蒙美昀, 田嘉铄. 老年人自评健康的能力-压力模型研究——以广州社区为例[J]. 地理科学, 2018, 38(4): 548-556. |
[7] | 柴彦威, 刘伯初, 刘瑜, 马修军, 塔娜, 申悦. 基于多源大数据的城市体征诊断指数构建与计算——以上海市为例[J]. 地理科学, 2018, 38(1): 1-10. |
[8] | 杨振, 丁启燕, 王念, 刘会敏. 中国人口健康脆弱性地区差异与影响因素分析[J]. 地理科学, 2018, 38(1): 135-142. |
[9] | 徐涵秋, 张博博, 关华德, 胡秀娟, 陈明华, 付伟. 南方红壤区林下水土流失的遥感判别——以福建省长汀县为例[J]. 地理科学, 2017, 37(8): 1270-1276. |
[10] | 杨振, 敖荣军, 王念, 丁启燕. 中国环境污染的健康压力时空差异特征[J]. 地理科学, 2017, 37(3): 339-346. |
[11] | 陈肖飞, 姚士谋, 张落成. 新型城镇化背景下中国城乡统筹的理论与实践问题[J]. 地理科学, 2016, 36(2): 188-195. |
[12] | 郑德凤, 赵锋霞, 孙才志, 臧正, 苏琳. 考虑参数不确定性的地下饮用水源地水质健康风险评价[J]. 地理科学, 2015, 35(8): 1007-1013. |
[13] | 帅红, 李景保. 典型年洞庭湖系统健康综合评价[J]. 地理科学, 2014, 34(2): 170-177. |
[14] | 陈志凡, 赵烨, 谷蕾, 呼红霞, 田青. 基于农业区位论的北京市土壤-小麦系统中重金属Pb积累特征及其健康风险[J]. 地理科学, 2012, 32(9): 1142-1147. |
[15] | 汤洁, 陈初雨, 李海毅, 张天琴, 肖瑞. 大庆市建成区土壤重金属潜在生态危害和健康风险评价[J]. 地理科学, 2011, 31(1): 117-122. |
|