地理科学 ›› 2021, Vol. 41 ›› Issue (1): 140-148.doi: 10.13249/j.cnki.sgs.2021.01.015

• • 上一篇    下一篇

POI数据在中国城市研究中的应用

张景奇1(), 史文宝1, 修春亮2,*()   

  1. 1.东北大学文法学院,辽宁 沈阳 110169
    2.东北大学江河建筑学院,辽宁 沈阳 110169
  • 收稿日期:2019-09-19 修回日期:2019-12-04 出版日期:2021-01-25 发布日期:2021-03-04
  • 通讯作者: 修春亮 E-mail:15_zhangjingqi@mail.neu.edu.cn;xiuchunliang@mail.neu.edu.cn
  • 作者简介:张景奇(1982‒),男,辽宁鞍山人,教授,博导,主要从事城市治理研究。E-mail: 15_zhangjingqi@mail.neu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(41871162);中央高校基本科研业务专项资金(N2014008);2020年度辽宁省社会科学基金重点项目(L20AGL005);2021年度辽宁省社科联课题(2021lslwzzkt-038)

Urban Research Using Points of Interest Data in China

Zhang Jingqi1(), Shi Wenbao1, Xiu Chunliang2,*()   

  1. 1. School of Humanities and Law, Northeastern University, Shenyang 110169, Liaoning China
    2. School of Jangho Architecture, Northeastern University, Shenyang 110169, Liaoning China
  • Received:2019-09-19 Revised:2019-12-04 Online:2021-01-25 Published:2021-03-04
  • Contact: Xiu Chunliang E-mail:15_zhangjingqi@mail.neu.edu.cn;xiuchunliang@mail.neu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(41871162);Fundamental Research Funds for the Central Universities(N2014008);2020 Liaoning Social Science Foundation(L20AGL005);2021 Liaoning Provincial Fedration Social Science Circle Foundation(2021lslwzzkt-038)

摘要:

兴趣点(Point of Interest,POI)数据的兴起带动了城市研究的革新。为梳理中国POI数据在城市研究的应用进展,阶段性总结其应用方向、数据分析方法及尚存不足,并为未来POI数据在中国城市发展中的应用提供思路和借鉴。应用CiteSpace工具对中国知网2010—2019年625篇相关文献进行知识图谱分析,结合分析结果对POI数据应用方向和数据分析方法进行梳理总结。结果表明:时间上,国内应用POI数据进行城市研究的文献在2013年后大量涌现,2017年呈现爆发式增长;应用上,主要用于城市功能区划分、城市中心区和边界识别、查明业态集聚分布以及兴趣点推荐4个方面;方法上,常用的有核密度分析、DBSCAN聚类分析和空间自相关分析3类。研究表明,POI地理大数据是一种研究城市发展的有效数据,有助于研究者深入了解城市的空间结构、分布格局和发展规律,未来可进一步与机器学习等算法结合,为城市外部扩张和内部功能结构调整在更长期的发展上提供一个决策分析手段,但POI数据尚无法代替面数据,研究时也要充分考虑到公众认知度高低对研究的影响。

关键词: POI, 地理大数据, 城市功能区划分, 业态集聚, 边界识别

Abstract:

The rising of POI (Point of Interest) data drives an innovation of urban research. In order to sort out the progress of urban research using POI data in China, summarize the directions of research, methods of data analysis and shortcomings, and provide references for the future application of POI data in China’s urban development, CiteSpace was used to analyze 625 related literatures in CNKI (China National Knowledge Infrastructure) database from 2010 to 2019. Result shows that a large number of literatures in urban research using POI data emerged since 2013, and boomed in 2017. According to the results of knowledge map analysis, the main applications of POI data in urban research are identification of urban functional areas, division of urban central areas and boundaries, identification of business agglomeration and recommendation of interested points. While the main methods for analyzing POI data are kernel density analysis, spatial correlation analysis and DBSCAN algorithm. Plenty researches show that POI data is a kind of effective data for urban research, and very helpful for researchers to better understand the spatial structures, distribution patterns and development rules of cities. In future, it can be combined with machine learning and the other algorithms to provide a decision-making method for a long-term development of urban expansion and internal functional structure adjustment. However, POI data can not replace the shape data in some scenarios, and the impact of public awareness should be seriously taken into account individually for different researches.

Key words: POI, geographic big data, division of urban functional areas, business agglomeration, identification of urban boundaries

中图分类号: 

  • F293.2