地理科学 ›› 2021, Vol. 41 ›› Issue (10): 1832-1842.doi: 10.13249/j.cnki.sgs.2021.10.015
收稿日期:
2020-12-13
修回日期:
2021-07-07
出版日期:
2021-10-25
发布日期:
2021-12-08
作者简介:
黄群芳(1979−),女,湖南益阳人,讲师,主要从事城市热岛效应与城市宜居研究。E-mail: flyingfangzi@163.com
基金资助:
Received:
2020-12-13
Revised:
2021-07-07
Online:
2021-10-25
Published:
2021-12-08
Supported by:
摘要:
随着全球城市化的快速发展和气候变暖及极端高温事件的加剧,城市热岛效应已成为了21世纪影响人类生存发展的重要环境问题。因此,阐明城市热岛强度时空变化特征,揭示多空间尺度下的形成机制是人文地理学和气候学研究的热点和前沿交叉科学问题。从街道峡谷微观尺度、城市街区局部尺度和城市宏观尺度全面总结和系统梳理了城市空间形态对城市热岛效应的多尺度影响和耦合机制,提出了未来通过定量表征城市热岛强度、城市空间形态的空间格局、时间演化特征及规律,构建空间关系分析模型,进而揭示城市空间形态在不同时空尺度对城市热岛强度的作用机制,为城市规划、宜居城市建设以及气候变化的响应与适应研究提供理论指导。
中图分类号:
黄群芳. 城市空间形态对城市热岛效应的多尺度影响研究进展[J]. 地理科学, 2021, 41(10): 1832-1842.
Huang Qunfang. Effects of Urban Spatial Morphology on Urban Heat Island Effect from Multi-spatial Scales Perspectives[J]. SCIENTIA GEOGRAPHICA SINICA, 2021, 41(10): 1832-1842.
[1] | Patz J A, Campbelllendrum D, Holloway T et al. Impact of regional climate change on human health[J]. Nature, 2005, 438(17): 310-317. |
[2] |
Zhou L, Edickinson R, Tian Y et al. Evidence for a significant urbanization effect on climate in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(26): 9540-9544.
doi: 10.1073/pnas.0400357101 |
[3] |
Estrada F, Botzen W W, Tol R S. A global economic assessment of city policies to reduce climate change impacts[J]. Nature Climate Change, 2017, 7(6): 403-406.
doi: 10.1038/nclimate3301 |
[4] |
Cao C, Lee X, Liu S et al. Urban heat islands in China enhanced by haze pollution[J]. Nature Communications, 2016, 7: 12509
doi: 10.1038/ncomms12509 |
[5] |
Peng J, Ma J, Liu Q et al. Spatial-temporal change of land surface temperature across 285 cities in China: An urban-rural contrast perspective[J]. Science of the Total Environment, 2018, 635: 487-497.
doi: 10.1016/j.scitotenv.2018.04.105 |
[6] |
Stewart I D. A systematic review and scientific critique of methodology in modern urban heat island literature[J]. International Journal of Climatology, 2011, 31(2): 200-217.
doi: 10.1002/joc.2141 |
[7] |
Santamouris M. Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact synergies with the global climate change[J]. Energy and Buildings, 2020, 207: 109482
doi: 10.1016/j.enbuild.2019.109482 |
[8] |
Oleson K, Anderson G, Jones B et al. Avoided climate impacts of urban and rural heat and cold waves over the US using large climate model ensembles for RCP8.5 and RCP4.5[J]. Climatic Change, 2018, 146(3-4): 377-392.
doi: 10.1007/s10584-015-1504-1 |
[9] |
Besir A B, Cuce E. Green roofs and facades: A comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 915-939.
doi: 10.1016/j.rser.2017.09.106 |
[10] | Balling R C, Gober P, Jones N. Sensitivity of residential water consumption to variations in climate: An intraurban analysis of Phoenix, Arizona[J]. Water Resources Research, 2008, 44(10): 1-11. |
[11] |
Rizwan A M, Dennis L Y C, Liu C. A review on the generation, determination and mitigation of Urban Heat Island[J]. Journal of Environmental Sciences, 2008, 20(1): 120-128.
doi: 10.1016/S1001-0742(08)60019-4 |
[12] |
Zhao L, Lee X, Smith R B et al. Strong contributions of local background climate to urban heat islands[J]. Nature, 2014, 511(7508): 216-219.
doi: 10.1038/nature13462 |
[13] |
Allegrini J, Carmeliet J. Coupled CFD and building energy simulations for studying the impacts of building height topology and buoyancy on local urban microclimates[J]. Urban Climate, 2017, 21: 278-305.
doi: 10.1016/j.uclim.2017.07.005 |
[14] |
Guo G, Wu Z, Xiao R et al. Impacts of urban biophysical composition on land surface temperature in urban heat island clusters[J]. Landscape and Urban Planning, 2015, 135: 1-10.
doi: 10.1016/j.landurbplan.2014.11.007 |
[15] |
Yang F, Lau S S, Qian F. Summertime heat island intensities in three high-rise housing quarters in inner-city Shanghai China: Building layout, density and greenery[J]. Building and Environment, 2010, 45(1): 115-134.
doi: 10.1016/j.buildenv.2009.05.010 |
[16] |
Zheng B, Bernard Bedra K, Zheng J et al. Combination of tree configuration with street configuration for thermal comfort optimization under extreme summer conditions in the urban center of Shantou city, China[J]. Sustainability, 2018, 10(11): 4192
doi: 10.3390/su10114192 |
[17] | Guo G, Zhou X, Wu Z et al. Characterizing the impact of urban morphology heterogeneity on land surface temperature in Guangzhou, China[J]. Environmental Modelling & Software, 2016, 84: 427-439. |
[18] |
Chun B, Guldmann J-M. Spatial statistical analysis and simulation of the urban heat island in high-density central cities[J]. Landscape and Urban Planning, 2014, 125: 76-88.
doi: 10.1016/j.landurbplan.2014.01.016 |
[19] | Song J, Du S, Feng X et al. The relationships between landscape compositions and land surface temperature: Quantifying their resolution sensitivity with spatial regression models[J]. Landscape & Urban Planning, 2014, 123: 145-157. |
[20] |
Wong M S, Nichol J E. Spatial variability of frontal area index and its relationship with urban heat island intensity[J]. International Journal of Remote Sensing, 2013, 34(3): 885-896.
doi: 10.1080/01431161.2012.714509 |
[21] |
黄焕春, 运迎霞, 李洪远, 等. 建筑密度与夏季热岛的尺度响应机制[J]. 规划师, 2015, 31(12): 101-106.
doi: 10.3969/j.issn.1006-0022.2015.12.017 |
Huang Huanchun, Yun Yingxia, Li Hongyuan et al. Building density and hot island scale response mechanism. Planners, 2015, 31(12): 101-106.
doi: 10.3969/j.issn.1006-0022.2015.12.017 |
|
[22] | 韩贵锋, 蔡智, 谢雨丝, 等. 城市建设强度与热岛的相关性——以重庆市开州区为例[J]. 土木建筑与环境工程, 2016(5): 138-147. |
Han Guifeng, Cai Zhi, Xie Yusi et al. Correlation between urban construction and urban heat island: A case study in Kaizhou District, Chongqing. Journal of Civil Architectural & Environmental Engineering, 2016(5): 138-147. | |
[23] |
Feng X, Myint S W. Exploring the effect of neighboring land cover pattern on land surface temperature of central building objects[J]. Building and Environment, 2016, 95: 346-354.
doi: 10.1016/j.buildenv.2015.09.019 |
[24] |
Scarano M, Mancini F. Assessing the relationship between sky view factor and land surface temperature to the spatial resolution[J]. International Journal of Remote Sensing, 2017, 38(23): 6910-6929.
doi: 10.1080/01431161.2017.1368099 |
[25] |
Lan Y, Zhan Q. How do urban buildings impact summer air temperature? The effects of building configurations in space and time[J]. Building and Environment, 2017, 125: 88-98.
doi: 10.1016/j.buildenv.2017.08.046 |
[26] |
Taleghani M, Kleerekoper L, Tenpierik M et al. Outdoor thermal comfort within five different urban forms in the Netherlands[J]. Building and Environment, 2015, 83: 65-78.
doi: 10.1016/j.buildenv.2014.03.014 |
[27] |
Hu Y, White M, Ding W. An urban form experiment on urban heat island effect in high density area[J]. Procedia Engineering, 2016, 169: 166-174.
doi: 10.1016/j.proeng.2016.10.020 |
[28] | Susca T. Green roofs to reduce building energy use? A review on key structural factors of green roofs and their effects on urban climate[J]. Building and Environment, 2019: 106273 |
[29] |
Munizgaal L P, Pezzuto C C, De Carvalho M F H et al. Urban geometry and the microclimate of street canyons in tropical climate[J]. Building and Environment, 2020, 169: 106547
doi: 10.1016/j.buildenv.2019.106547 |
[30] |
Jamei E, Rajagopalan P, Seyedmahmoudian M et al. Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 1002-1017.
doi: 10.1016/j.rser.2015.10.104 |
[31] | Li G, Ren Z, Zhan C. Sky View Factor-based correlation of landscape morphology and the thermal environment of street canyons: A case study of Harbin, China[J]. Building and Environment, 2020: 169 |
[32] | Oke T R. Boundary layer climates (2nd ed.) [M]. London: Routledge, 1987. |
[33] |
Arnfield A J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island[J]. International Journal of Climatology, 2003, 23(1): 1-26.
doi: 10.1002/joc.859 |
[34] |
Eliasson I, Offerle B, Grimmond C et al. Wind fields and turbulence statistics in an urban street canyon[J]. Atmospheric Environment, 2006, 40(1): 1-16.
doi: 10.1016/j.atmosenv.2005.03.031 |
[35] |
Oke T R. Canyon geometry and the nocturnal urban heat island: Comparison of scale model and field observations[J]. Journal of Climatology, 1981, 1(3): 237-254.
doi: 10.1002/joc.3370010304 |
[36] |
Theeuwes N, Steeneveld G, Ronda R et al. Seasonal dependence of the urban heat island on the street canyon aspect ratio[J]. Quarterly Journal of the Royal Meteorological Society, 2014, 140(684): 2197-2210.
doi: 10.1002/qj.2289 |
[37] |
Johansson E. Influence of urban geometry on outdoor thermal comfort in a hot dry climate: A study in Fez, Morocco[J]. Building and Environment, 2006, 41(10): 1326-1338.
doi: 10.1016/j.buildenv.2005.05.022 |
[38] |
Marciotto E R, Oliveira A P, Hanna S R. Modeling study of the aspect ratio influence on urban canopy energy fluxes with a modified wall-canyon energy budget scheme[J]. Building and Environment, 2010, 45(11): 2497-2505.
doi: 10.1016/j.buildenv.2010.05.012 |
[39] | Nasir D S N M, Hughes B R, Calautit J K et al. Effect of urban street canyon aspect ratio on thermal performance of road pavement solar collectors (RPSC)[M]//Yan et al. Beijing: 8th International Conference on Applied Energy, 2017. |
[40] |
Kantzioura A, Kosmopoulos P, Zoras S. Urban surface temperature and microclimate measurements in Thessaloniki[J]. Energy and Buildings, 2012, 44: 63-72.
doi: 10.1016/j.enbuild.2011.10.019 |
[41] |
Chatzidimitriou A, Yannas S. Street canyon design and improvement potential for urban open spaces: The influence of canyon aspect ratio and orientation on microclimate and outdoor comfort[J]. Sustainable Cities and Society, 2017, 33: 85-101.
doi: 10.1016/j.scs.2017.05.019 |
[42] |
Georgakis C, Santamouris M. Experimental investigation of air flow and temperature distribution in deep urban canyons for natural ventilation purposes[J]. Energy and Buildings, 2006, 38(4): 367-376.
doi: 10.1016/j.enbuild.2005.07.009 |
[43] |
Ahmed K S. Comfort in urban spaces: defining the boundaries of outdoor thermal comfort for the tropical urban environments[J]. Energy and Buildings, 2003, 35(1): 103-110.
doi: 10.1016/S0378-7788(02)00085-3 |
[44] |
Qaid A, Ossen D R. Effect of asymmetrical street aspect ratios on microclimates in hot, humid regions[J]. International Journal of Biometeorology, 2015, 59(6): 657-677.
doi: 10.1007/s00484-014-0878-5 |
[45] |
Khaled A. Al-Sallal, Laila Al-Rais. Outdoor airflow analysis and potential for passive cooling in the modern urban context of Dubai[J]. Renewable Energy, 2012, 38(1): 40-49.
doi: 10.1016/j.renene.2011.06.046 |
[46] |
Yan H, Fan S, Guo C et al. Assessing the effects of landscape design parameters on intra-urban air temperature variability: The case of Beijing, China[J]. Building and Environment, 2014, 76: 44-53.
doi: 10.1016/j.buildenv.2014.03.007 |
[47] |
Svensson M K. Sky view factor analysis-implications for urban air temperature differences[J]. Meteorological Applications, 2004, 11(3): 201-211.
doi: 10.1017/S1350482704001288 |
[48] |
Chun B, Guhathakurta S. The impacts of three-dimensional surface characteristics on urban heat islands over the diurnal cycle[J]. The Professional Geographer, 2017, 69(2): 191-202.
doi: 10.1080/00330124.2016.1208102 |
[49] |
Yang F, Qian F, Lau S S. Urban form and density as indicators for summertime outdoor ventilation potential: A case study on high-rise housing in Shanghai[J]. Building and Environment, 2013, 70: 122-137.
doi: 10.1016/j.buildenv.2013.08.019 |
[50] |
Charalampopoulos I, Tsiros I, Chronopoulou-Sereli A et al. Analysis of thermal bioclimate in various urban configurations in Athens, Greece[J]. Urban Ecosystems, 2013, 16(2): 217-233.
doi: 10.1007/s11252-012-0252-5 |
[51] |
Mohajeri N, Gudmundsson A, Kunckler T et al. A solar-based sustainable urban design: The effects of city-scale street-canyon geometry on solar access in Geneva, Switzerland[J]. Applied Energy, 2019, 240: 173-190.
doi: 10.1016/j.apenergy.2019.02.014 |
[52] |
Erell E, Williamson T. Intra-urban differences in canopy layer air temperature at a mid-latitude city[J]. International Journal of Climatology, 2007, 27(9): 1243-1255.
doi: 10.1002/joc.1469 |
[53] |
Alitoudert F, Mayer H. Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate[J]. Building and Environment, 2006, 41(2): 94-108.
doi: 10.1016/j.buildenv.2005.01.013 |
[54] |
Ng E, Cheng V. Urban human thermal comfort in hot and humid Hong Kong[J]. Energy and Buildings, 2012, 55: 51-65.
doi: 10.1016/j.enbuild.2011.09.025 |
[55] |
Andreou E. Thermal comfort in outdoor spaces and urban canyon microclimate[J]. Renewable Energy, 2013, 55: 182-188.
doi: 10.1016/j.renene.2012.12.040 |
[56] |
Darbani E S, Parapari D M, Boland J et al. Impacts of urban form and urban heat island on the outdoor thermal comfort: A pilot study on Mashhad[J]. International Journal of Biometeorology, 2021, 65(7): 1101-1117.
doi: 10.1007/s00484-021-02091-3 |
[57] |
Cao A, Li Q, Meng Q. Effects of orientation of urban roads on the local thermal environment in Guangzhou City[J]. Procedia Engineering, 2015, 121: 2075-2082.
doi: 10.1016/j.proeng.2015.09.209 |
[58] | Sandberg M, Westerberg U, Claesson L. Catchment area: A new approach to urban windiness[J]. Proceedings of the Fifth International Conference on Urban Climate, 2003: 1-5. |
[59] |
Hien W N, Kardinal Jusuf S, Samsudin R et al. A climatic responsive urban planning model for high density city: Singapore’s commercial district[J]. International Journal of Sustainable Building Technology and Urban Development, 2011, 2(4): 323-330.
doi: 10.5390/SUSB.2011.2.4.323 |
[60] |
黄媛, 刘敬, 陈方丽, 等. 基于局地气候分区理论的城市形态及其热岛量级研究[J]. 新建筑, 2019(4): 126-131.
doi: 10.12069/j.na.201904126 |
Huang Yuan, Liu Jing, Chen Fangli et al. A study on the urban form and its heat island magnitude based on local climate zones scheme. New Architecture, 2019(4): 126-131.
doi: 10.12069/j.na.201904126 |
|
[61] |
Petralli M, Massetti L, Brandani G et al. Urban planning indicators: Useful tools to measure the effect of urbanization and vegetation on summer air temperatures[J]. International Journal of Climatology, 2014, 34(4): 1236-1244.
doi: 10.1002/joc.3760 |
[62] | 葛亚宁, 徐新良, 李静, 等. 北京城市建筑密度分布对热岛效应的影响研究[J]. 地球信息科学学报, 2016(12): 1698-1706. |
Ge Yaning, Xu Xinliang, Li Jing et al. Study on the influence of urban building density on the heat island effect in Beijing. Journal of Geo-Information Science, 2016(12): 1698-1706. | |
[63] | Lin Pingying, Lau S S Q, Qin Hao et al. Effects of urban planning indicators on urban heat island: A case study of pocket parks in high-rise high density environment[J]. Landscape & Urban Planning, 2017, 168: 48-60. |
[64] |
Yang Y, Zhang X, Lu X et al. Effects of building design elements on residential thermal environment[J]. Sustainability, 2017, 10(1): 1-15.
doi: 10.1089/sus.2017.29076.upfront |
[65] |
Konarska J, Holmer B, Lindberg F et al. Influence of vegetation and building geometry on the spatial variations of air temperature and cooling rates in a high-latitude city[J]. International Journal of Climatology, 2016, 36(5): 2379-2395.
doi: 10.1002/joc.4502 |
[66] |
Erell E. The application of urban climate research in the design of cities[J]. Advances in Building Energy Research, 2008, 2(1): 95-121.
doi: 10.3763/aber.2008.0204 |
[67] |
Van Hove L, Jacobs C, Heusinkveld B et al. Temporal and spatial variability of urban heat island and thermal comfort within the Rotterdam agglomeration[J]. Building and Environment, 2015, 83: 91-103.
doi: 10.1016/j.buildenv.2014.08.029 |
[68] |
Ng E. Towards planning and practical understanding of the need for meteorological and climatic information in the design of high-density cities: A case based study of Hong Kong[J]. International Journal of Climatology, 2012, 32(4): 582-598.
doi: 10.1002/joc.2292 |
[69] |
Giridharan R, Lau S, Ganesan S et al. Lowering the outdoor temperature in high-rise high-density residential developments of coastal Hong Kong: The vegetation influence[J]. Building and Environment, 2008, 43(10): 1583-1595.
doi: 10.1016/j.buildenv.2007.10.003 |
[70] |
Fan S, Li X, Han J et al. Assessing the effects of landscape characteristics on the thermal environment of open spaces in residential areas of Beijing, China[J]. Landscape and Ecological Engineering, 2018, 14(1): 79-90.
doi: 10.1007/s11355-017-0326-x |
[71] | Giridharan R, Ganesan S, Lau S S Y. Daytime urban heat island effect in high-rise and high-density residential developments in Hong Kong[J]. Energy & Buildings, 2004, 36(6): 525-534. |
[72] |
Chatzipoulka C, Nikolopoulou M. Urban geometry, SVF and insolation of open spaces: London and Paris[J]. Building Research and Information, 2018, 46(8): 881-898.
doi: 10.1080/09613218.2018.1463015 |
[73] |
Berger C, Rosentreter J, Voltersen M et al. Spatio-temporal analysis of the relationship between 2D/3D urban site characteristics and land surface temperature[J]. Remote Sensing of Environment, 2017, 193: 225-243.
doi: 10.1016/j.rse.2017.02.020 |
[74] |
Yang X, Li Y. The impact of building density and building height heterogeneity on average urban albedo and street surface temperature[J]. Building and Environment, 2015, 90: 146-156.
doi: 10.1016/j.buildenv.2015.03.037 |
[75] |
Huang X, Wang Y. Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data: A case study of Wuhan, Central China[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152: 119-131.
doi: 10.1016/j.isprsjprs.2019.04.010 |
[76] |
Hong B, Lin B. Numerical studies of the outdoor wind environment and thermal comfort at pedestrian level in housing blocks with different building layout patterns and trees arrangement[J]. Renewable Energy, 2015, 73: 18-27.
doi: 10.1016/j.renene.2014.05.060 |
[77] | Yang S H, Zhou D, Wang Y P et al. Comparing impact of multi-factor planning layouts in residential areas on summer thermal comfort based on orthogonal design of experiments (ODOE)[J]. Building and Environment, 2020, 182: 1-17 |
[78] |
Raji B, Tenpierik M J, Van Den Dobbelsteen A. Early-stage design considerations for the energy-efficiency of high-rise office buildings[J]. Sustainability, 2017, 9(4): 623
doi: 10.3390/su9040623 |
[79] | 徐涵秋. 基于城市地表参数变化的城市热岛效应分析[J]. 生态学报, 2011, 31(14): 3890-3901. |
Xu Hanqiu. Analysis on urban heat island effect based on the dynamics of urban surface biophysical descriptors. Acta Ecologica Sinica, 2011, 31(14): 3890-3901. | |
[80] |
Zhou X, Chen H. Impact of urbanization-related land use land cover changes and urban morphology changes on the urban heat island phenomenon[J]. Science of the Total Environment, 2018, 635: 1467-1476.
doi: 10.1016/j.scitotenv.2018.04.091 |
[81] |
Unger J. Connection between urban heat island and sky view factor approximated by a software tool on a 3D urban database[J]. International Journal of Environment and Pollution, 2009, 36: 59-80.
doi: 10.1504/IJEP.2009.021817 |
[82] |
Chen L, Ng E, An X et al. Sky view factor analysis of street canyons and its implications for daytime intra-urban air temperature differentials in high-rise, high-density urban areas of Hong Kong: A GIS-based simulation approach[J]. International Journal of Climatology, 2012, 32(1): 121-136.
doi: 10.1002/joc.2243 |
[83] |
Yin C, Yuan M, Lu Y et al. Effects of urban form on the urban heat island effect based on spatial regression model[J]. Science of the Total Environment, 2018, 634: 696-704.
doi: 10.1016/j.scitotenv.2018.03.350 |
[84] |
Scarano M, Sobrino J A. On the relationship between the sky view factor and the land surface temperature derived by Landsat-8 images in Bari, Italy[J]. International Journal of Remote Sensing, 2015, 36(19-20): 4820-4835.
doi: 10.1080/01431161.2015.1070325 |
[85] |
Loughner C P, Allen D J, Zhang D L et al. Roles of urban tree canopy and buildings in urban heat island effects: Parameterization and preliminary results[J]. Journal of Applied Meteorology and Climatology, 2012, 51(10): 1775-1793.
doi: 10.1175/JAMC-D-11-0228.1 |
[86] |
Yang Q, Huang X, Li J. Assessing the relationship between surface urban heat islands and landscape patterns across climatic zones in China[J]. Scientific Reports, 2017, 7(1): 9337
doi: 10.1038/s41598-017-09628-w |
[87] |
Lin P Y, Gou Z H, Lau S S Y et al. The impact of urban design descriptors on outdoor thermal environment: A literature review[J]. Energies, 2017, 10(12): 2151
doi: 10.3390/en10122151 |
[88] |
Rathphum P, Kasem C, Surat B. Physical characteristics of Bangkok and its urban heat island phenomenon[J]. Building and Environment, 2018, 143: 561-569.
doi: 10.1016/j.buildenv.2018.07.042 |
[89] | Unger J. Intra-urban relationship between surface geometry and urban heat island: Review and new approach[J]. Climate Research, 2004, 27(3): 253-264. |
[1] | 李丹, 周嘉, 战大庆. 黑龙江省耕地时空变化及驱动因素分析[J]. 地理科学, 2021, 41(7): 1266-1275. |
[2] | 韩美, 孔祥伦, 李云龙, 魏帆, 孔凡彪, 黄淑萍. 黄河三角洲“三生”用地转型的生态环境效应及其空间分异机制[J]. 地理科学, 2021, 41(6): 1009-1018. |
[3] | 李鲁奇, 孔翔. 国外城市系统智能体模型的科学计量分析[J]. 地理科学, 2021, 41(5): 797-803. |
[4] | 张文斌, 张志斌, 董建红, 张怀林, 高发文, 公维民. 多尺度视角下耕地利用功能转型及驱动力分析——以甘肃省为例[J]. 地理科学, 2021, 41(5): 900-910. |
[5] | 蒙吉军, 江颂, 拉巴卓玛, 张维佳. 基于景观格局的黑河中游土地利用冲突时空分析[J]. 地理科学, 2020, 40(9): 1553-1562. |
[6] | 于正松, 程叶青, 李小建, 孙东琪. 工业镇“生产-生活-生态”空间演化过程、动因与重构——以河南省曲沟镇为例[J]. 地理科学, 2020, 40(4): 646-656. |
[7] | 赵鹏军, 万婕. 城市交通与土地利用一体化模型的理论基础与发展趋势[J]. 地理科学, 2020, 40(1): 12-21. |
[8] | 李传华,韩海燕,范也平,曹红娟,王玉涛,孙皓. 基于Biome-BGC模型的青藏高原五道梁地区NPP变化及情景模拟[J]. 地理科学, 2019, 39(8): 1330-1339. |
[9] | 王万同, 孙汀, 王金霞, 付强, 安传艳. 基于多源遥感数据的区域生态系统服务价值年际动态监测——以中原城市群为例[J]. 地理科学, 2019, 39(4): 680-687. |
[10] | 姚远, 陈曦, 钱静. 定量遥感尺度转换方法研究进展[J]. 地理科学, 2019, 39(3): 367-376. |
[11] | 田俊峰, 王彬燕, 王士君. 东北三省城市土地利用效益评价及耦合协调关系研究[J]. 地理科学, 2019, 39(2): 305-315. |
[12] | 周嘉, 王钰萱, 刘学荣, 时小翠, 蔡春苗. 基于土地利用变化的中国省域碳排放时空差异及碳补偿研究[J]. 地理科学, 2019, 39(12): 1955-1961. |
[13] | 曹小曙,梁斐雯,陈慧灵. 特大城市空间形态差异对交通网络效率的影响[J]. 地理科学, 2019, 39(1): 41-51. |
[14] | 孔祥夫, 杨家文. 土地利用视角下的轨道站点客流预测——以深圳市为例[J]. 地理科学, 2018, 38(12): 2074-2083. |
[15] | 匡文慧. 城市土地利用/覆盖变化与热环境生态调控研究进展与展望[J]. 地理科学, 2018, 38(10): 1643-1652. |
|