地理科学 ›› 2022, Vol. 42 ›› Issue (6): 1124-1132.doi: 10.13249/j.cnki.sgs.2022.06.018
傅笛1,2(), 金鑫1,2,3,*(
), 金彦香1,2,3, 毛旭锋1,2,3, 翟婧雅1,2
收稿日期:
2021-05-06
修回日期:
2021-08-21
出版日期:
2022-06-25
发布日期:
2022-08-23
通讯作者:
金鑫
E-mail:fud2020@163.com;jinx13@lzu.edu.cn
作者简介:
傅笛(1997−),女,重庆荣昌人,硕士研究生,主要从事水文过程方面的研究。E-mail: fud2020@163.com
基金资助:
Fu Di1,2(), Jin Xin1,2,3,*(
), Jin Yanxiang1,2,3, Mao Xufeng1,2,3, Zhai Jingya1,2
Received:
2021-05-06
Revised:
2021-08-21
Online:
2022-06-25
Published:
2022-08-23
Contact:
Jin Xin
E-mail:fud2020@163.com;jinx13@lzu.edu.cn
Supported by:
摘要:
为准确刻画资料缺乏、地表水–地下水转换频繁的泽令沟盆地地表水?地下水不同时空尺度上的转换关系,利用河道径流数据、遥感蒸散发数据、地下水位观测数据等对SWAT-MODFLOW耦合模型进行率定和验证,在此基础上对泽令沟盆地水循环过程进行模拟分析。结果显示:① SWAT-MODFLOW耦合模型模拟效果较好,率定期和验证期月径流量的R2≥0.73,NSE≥0.67,PBIAS在?20%~20%。其各子流域实际蒸散发的R2均大于0.91,NSE均大于0.85,PBIAS在?10%~10%。此外,模拟地下水位与实测值误差在0.6 m以内,R2为0.94。② 地表水补给地下水的河道占整个河道长度90.31%,年平均补给量占年总交换水量的50.20%;季节尺度上,补给的最大值出现在7月,为331043.31 m3/d,最小值出现在12月份,为41208.33 m3/d。地下水对地表水的补给量较为稳定,季节性变幅在?2.5%~2.5%,年际变幅处于?6.5%~0.6%之间。
中图分类号:
傅笛, 金鑫, 金彦香, 毛旭锋, 翟婧雅. 基于SWAT-MODFLOW耦合模型的巴音河中游泽令沟盆地地表水−地下水转换关系研究[J]. 地理科学, 2022, 42(6): 1124-1132.
Fu Di, Jin Xin, Jin Yanxiang, Mao Xufeng, Zhai Jingya. Modelling of the Surface-ground Water Exchange Yield in Zelinggou Basin, Middle Reaches of the Bayin River Based on SWAT-MODFLOW Coupled Model[J]. SCIENTIA GEOGRAPHICA SINICA, 2022, 42(6): 1124-1132.
Table 1
Results of SWAT model parameter sensitivity analysis
参数名 | 参数含义 | t-Stat | P-value |
GW_DELAY | 地下水的时间延迟 | 1.16 | 0.24 |
ESCO | 土壤蒸发补偿因子 | 1.20 | 0.23 |
EPCO | 植物吸收补偿因子 | 1.46 | 0.14 |
SMFMN | 12月21日的融雪因子 | −1.49 | 0.14 |
CH_K2 | 主河道冲积物的有效渗透系数 | 1.63 | 0.10 |
REVAPMN | 发生revap或渗入深层含水层所需 的浅层含水层的水位阈值> | 1.74 | 0.08 |
CH_N2 | 主河道的曼宁系数 | −2.00 | 0.05 |
SMTMP | 融雪基温 | −2.04 | 0.04 |
HRU_SLP | 平均比降 | −2.24 | 0.03 |
SOL_BD | 土壤的湿容重 | −3.75 | 0.00 |
SOL_K | 饱和渗透系数 | −4.60 | 0.00 |
SLSUBBSN | 平均坡长 | 5.65 | 0.00 |
ALPHA_BF | 基流因子 | −8.33 | 0.00 |
CANMX | 最大冠层截留量 | 9.49 | 0.00 |
CN2 | 水分条件Ⅱ时的初始 SCS径流曲线数 | −23.44 | 0.00 |
Table 3
Evaluation of the SWAT-MODFLOW simulated evapotranspiration
子流域ID | R2 | NSE | PBIAS /% |
注:① NSE为纳什效率系数,用于评价拟合优度,范围为[−∞,1],0~1则越趋近于1,代表一致性越高。② PBIAS为误差系数,用于评价模拟值高于或者低于实测值的平均趋势,越趋于0,模拟效果越好。−10%~10%则代表模拟效果非常好,−20%~20%则代表模拟效果满意。 | |||
1 | 0.92 | 0.87 | 8.3 |
2 | 0.91 | 0.85 | 2.3 |
3 | 0.91 | 0.86 | −9.4 |
4 | 0.93 | 0.92 | 5.8 |
5 | 0.93 | 0.85 | −7.2 |
6 | 0.93 | 0.91 | 3.0 |
7 | 0.93 | 0.87 | −6.1 |
[1] | 韩进军, 王建萍, 陈亮, 等. 影响柴达木盆地降水量变化的主要天气动力因素[J]. 干旱区研究, 2020, 37 (2): 314-324 |
Han Jinjun, Wang Jianping, Chen Liang et al. The main weather dynamic factors affecting precipitation change in the Qaidam Basin. Arid Zone Research, 2020, 37 (2): 314-324 | |
[2] |
申元村, 王秀红, 程维明, 等. 中国戈壁综合自然区划研究[J]. 地理科学进展, 2016, 35 (1): 57-66
doi: 10.18306/dlkxjz.2016.01.007 |
Shen Yuancun, Wang Xiuhong, Cheng Weiming et al. Integrated physical regionalization of stony deserts in China. Progress in Geography, 2016, 35 (1): 57-66
doi: 10.18306/dlkxjz.2016.01.007 |
|
[3] | 葛根巴图, 魏巍, 张晓, 等. 柴达木盆地极端气候时空趋势及周期特征[J]. 干旱区研究, 2020, 37 (2): 304-313 |
Gegen Batu, Wei Wei, Zhang Xiao et al. Spatiotemporal trends and periodic features of climate extremes over the Qaidam Basin, China, during 1960 -2014[J]. Arid Zone Research, 2020, 37 (2): 304-313 | |
[4] |
Fu Yang, Chen Hui, Niu Huihui et al. Spatial and temporal variation of vegetation phenology and its response to climate changes in Qaidam basin from 2000 to 2015[J]. Journal of Geographical Sciences, 2018, 28 (4): 400-414
doi: 10.1007/s11442-018-1480-2 |
[5] |
夏军, 乔云峰, 宋献方, 等. 岔巴沟流域不同下垫面对降雨径流关系影响规律分析[J]. 资源科学, 2007, 29 (1): 70-76
doi: 10.3321/j.issn:1007-7588.2007.01.011 |
Xia Jun, Qiao Yunfeng, Song Xianfang et al. Analysis about effect rules of underlying surface change to the relationship between rainfall and runoff in the Chabagou Catchment. Resources Science, 2007, 29 (1): 70-76
doi: 10.3321/j.issn:1007-7588.2007.01.011 |
|
[6] |
程国栋, 赵传燕. 干旱区内陆河流域生态水文综合集成研究[J]. 地球科学进展, 2008, 23 (10): 1005-1012
doi: 10.3321/j.issn:1001-8166.2008.10.001 |
Cheng Guodong, Zhao Chuanyan. An integrated study of ecological and hydrological processes in the inland River Basin of the Arid Rgions, China. Advances in Earth Science, 2008, 23 (10): 1005-1012
doi: 10.3321/j.issn:1001-8166.2008.10.001 |
|
[7] | 李新荣, 张志山, 王新平, 等. 干旱区土壤植被系统恢复的生态水文学研究进展[J]. 中国沙漠, 2009, 29 (5): 845-852 |
Li Xinrong, Zhang Zhishan, Wang Xinping et al. The ecohydrology of the soil vegetation system restoration in arid zones: A review. Journal of Desert Research, 2009, 29 (5): 845-852 | |
[8] |
Shen Qin, Gao Guangyao, Fu Bojie et al. Sap flow and water use sources of shelter‐belt trees in an arid inland river basin of Northwest China[J]. Ecohydrology, 2015, 8 (8): 1446-1458
doi: 10.1002/eco.1593 |
[9] |
郝爱兵, 李亚民, 郑跃军, 等. 利用地下水位监测资料分析水文地质条件的实例研究——新疆奎屯河流域南洼地[J]. 水文地质工程地质, 2008 (4): 27-30
doi: 10.3969/j.issn.1000-3665.2008.04.007 |
Hao Aibing, Li Yamin, Zheng Yuejun et al. A few examples of using groundwater monitoring data to identify hydrogeological conditions—Nanwadi in Kuitun River Basin‚ Xinjiang. Hydrogeology & Engineering Geology, 2008 (4): 27-30
doi: 10.3969/j.issn.1000-3665.2008.04.007 |
|
[10] | 彭红明, 许伟林, 何青, 等. 布哈河流域中上游地区水文地球化学与同位素特征[J]. 干旱区研究, 2015, 32 (5): 1032-1038 |
Peng Hongming, Xu Weilin, He Qing et al. Hydrogeochemistry and isotope features in the middle and upper reaches of Buha River Basin. Arid Zone Research, 2015, 32 (5): 1032-1038 | |
[11] |
吴险峰, 刘昌明. 流域水文模型研究的若干进展[J]. 地理科学进展, 2002, 21 (4): 341-348
doi: 10.3969/j.issn.1007-6301.2002.04.007 |
Wu Xianfeng, Liu Changming. Progress in watershed hydrological models. Progress in Geography, 2002, 21 (4): 341-348
doi: 10.3969/j.issn.1007-6301.2002.04.007 |
|
[12] |
赖正清, 李硕, 李呈罡, 等. SWAT模型在黑河中上游流域的改进与应用[J]. 自然资源学报, 2013, 28 (8): 1404-1413
doi: 10.11849/zrzyxb.2013.08.013 |
Lai Zhengqing, Li Shuo, Li Chenggang et al. Improvement and applications of SWAT Model in the upper-middle Heihe River Basin. Journal of Natural Resources, 2013, 28 (8): 1404-1413
doi: 10.11849/zrzyxb.2013.08.013 |
|
[13] |
Kim Nam Won, Chung II Moon, Won Yoo Seung et al. Development and application of the integrated SWAT–MODFLOW model[J]. Journal of Hydrology, 2008, 356 (1-2): 1-16
doi: 10.1016/j.jhydrol.2008.02.024 |
[14] |
王中根, 朱新军, 李尉, 等. 海河流域地表水与地下水耦合模拟[J]. 地理科学进展, 2011, 30 (11): 1345-1353
doi: 10.11820/dlkxjz.2011.11.003 |
Wang Zhonggen, Zhu Xinjun, Li Wei et al. A coupled surface-water/groundwater model for Haihe River Basin. Progress in Geography, 2011, 30 (11): 1345-1353
doi: 10.11820/dlkxjz.2011.11.003 |
|
[15] | Bailey Ryan T, Wible Tyler C, Arabi Mazdak et al. Assessing regional‐scale spatio‐temporal patterns of groundwater-surface water interactions using a coupled SWAT‐MODFLOW Model[J]. Hydrological Processes, 2016, 30 (23): 4420-4433 |
[16] |
Zhang Jing, Ross Mark, Trout Ken. Certification tests of MODFLOW implementation in the Integrated Hydrologic Model[J]. Journal of Hydrologic Engineering, 2014, 19 (3): 643-648
doi: 10.1061/(ASCE)HE.1943-5584.0000822 |
[17] |
Carroll Rosemary W H, Huntington Justin L, Snyder Keirith A et al. Evaluating mountain meadow groundwater response to Pinyon‐Juniper and temperature in a great basin watershed[J]. Ecohydrology, 2017, 10 (1): e1792
doi: 10.1002/eco.1792 |
[18] |
Yifru Bisrat Ayalew, Chung II-Moon, Kim Min-Gyu et al. Assessment of groundwater recharge in Agro-Urban Watersheds using Integrated SWAT-MODFLOW Model[J]. Sustainability, 2020, 12 (16): 6593
doi: 10.3390/su12166593 |
[19] | Molina-Navarro Eugenio, Bailey Ryan T, Andersen Hans Estrup et al. Comparison of abstraction scenarios simulated by SWAT and SWAT-MODFLOW[J]. Hydrological Sciences Journal, 2019, 64 (1-4): 434-454 |
[20] |
Wei Xiaolu, Bailey Ryan T. Assessment of system responses in intensively irrigated stream-aquifer systems using SWAT-MODFLOW[J]. Water, 2019, 11 (8): 1576
doi: 10.3390/w11081576 |
[21] | Guzman Jorge A, Moriasi Daniel, Gowda Prasanna H et al. A model integration framework for linking SWAT and MODFLOW[J]. Environmental Modelling & Software, 2015, 73: 103-116 |
[22] |
Jin Xin, Jin Yanxiang, Mao Xufeng. Ecological risk assessment of cities on the Tibetan Plateau based on land use/land cover changes—Case study of Delingha City[J]. Ecological Indicators, 2019, 101: 185-191
doi: 10.1016/j.ecolind.2018.12.050 |
[23] | 贺怀振, 束龙仓, 鲁程鹏, 等. 拟建水库对干旱区巴音河傍河地下水水源地的影响分析[J]. 水电能源科学, 2013, 31 (12): 186-190 |
He Huaizhen, Shu Longcang, Lu Chengpeng et al. Influence analysis of constructing reservoir on riverside well field in arid inland area. Water Resources and Power, 2013, 31 (12): 186-190 | |
[24] | 冯林传. 巴音河山前冲洪积平原地下水资源开发利用研究[D]. 西安: 长安大学, 2011. |
Feng Linchuan. Study on groundwater resource development of piedmont alluvial plain in Baying River. Xi’an: Chang’an University, 2011. | |
[25] |
Schuol Juergen, Abbaspour Karim C, Srinivasan Raghavan et al. Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model[J]. Journal of Hydrology, 2008, 352 (1-2): 30-49
doi: 10.1016/j.jhydrol.2007.12.025 |
[26] |
Jin Xin, Zhang Lanhui, Gu Juan et al. Modelling the impacts of spatial heterogeneity in soil hydraulic properties on hydrological process in the upper reach of the Heihe River in the Qilian Mountains, Northwest China[J]. Hydrological Processes, 2015, 29 (15): 3318-3327
doi: 10.1002/hyp.10437 |
[27] |
Melaku Nigus Demelash, Wang Junye. A modified SWAT module for estimating groundwater table at Lethbridge and Barons, Alberta, Canada[J]. Journal of Hydrology, 2019, 575: 420-431
doi: 10.1016/j.jhydrol.2019.05.052 |
[28] | Feinstein Daniel, Hart D J, Gatzke S E et al. A simple method for simulating groundwater interactions with fens to forecast development effects[J]. Groundwater, 2019, 58 (4): 524-534 |
[29] | 青海省农业资源区划办公室. 青海土壤[M]. 北京: 中国农业出版社, 1997. |
Regional Planning Office of Agricultural Resoorees in Qinghai. Qinghai soil. Beijing: Asriculture Press, 1997. | |
[30] |
Fioreze Mariele, Mancuso Malva Andrea. MODFLOW and MODPATH for hydrodynamic simulation of porous media in horizontal subsurface flow constructed wetlands: A tool for design criteria[J]. Ecological Engineering, 2019, 130: 45-52
doi: 10.1016/j.ecoleng.2019.01.012 |
[31] |
王仕琴, 邵景力, 宋献方, 等. 地下水模型MODFLOW和GIS在华北平原地下水资源评价中的应用[J]. 地理研究, 2007 (5): 975-983
doi: 10.3321/j.issn:1000-0585.2007.05.014 |
Wang Shiqin, Shao Jingli, Song Xianfang et al. The application of groundwater model, MODFLOW, and GIS technology in the dynamic evaluation of groundwater resource in North China Plain. Geographical Research, 2007 (5): 975-983
doi: 10.3321/j.issn:1000-0585.2007.05.014 |
|
[32] |
Luo Yi, Sophocleous Marios. Two-way coupling of unsaturated-saturated flow by integrating the SWAT and MODFLOW models with application in an irrigation district in arid region of West China[J]. Journal of Arid Land, 2011, 3 (3): 164-173
doi: 10.3724/SP.J.1227.2011.00164 |
[33] |
Jin Xin, Jin Yanxiang. Calibration of a distributed hydrological model in a Data-Scarce Basin based on GLEAM Datasets[J]. Water, 2020, 12 (3): 897
doi: 10.3390/w12030897 |
[34] |
杨秀芹, 王国杰, 潘欣, 等. 基于GLEAM遥感模型的中国1980—2011年地表蒸散发时空变化[J]. 农业工程学报, 2015 (21): 132-141
doi: 10.11975/j.issn.1002-6819.2015.21.017 |
Yang Xiuqin, Wang Guojie, Pan Xin et al. Spatio-temporal variability of terrestrial evapotranspiration in China from 1980 to 2011 based on GLEAM data. Transactions of the Chinese Society of Agricultural Engineering, 2015 (21): 132-141
doi: 10.11975/j.issn.1002-6819.2015.21.017 |
|
[35] |
金鑫, 金彦香, 杨登兴. SWAT模型在土地利用/覆被变化剧烈地区的改进与应用[J]. 地球信息科学学报, 2018, 20 (8): 1064-1073
doi: 10.12082/dqxxkx.2018.170606 |
Jin Xin, Jin Yanxiang, Yang Dengxing. Improved SWAT and its application to a region with severe land use/land cover changes. Geo-Information Science, 2018, 20 (8): 1064-1073
doi: 10.12082/dqxxkx.2018.170606 |
|
[36] |
文广超, 王文科, 段磊, 等. 基于水化学和稳定同位素定量评价巴音河流域地表水与地下水转化关系[J]. 干旱区地理, 2018, 41 (4): 734-743
doi: 10.12118/j.issn.1000-6060.2018.04.08 |
Wen Guangchao, Wang Wenke, Duan Lei et al. Quantitatively evaluating exchanging relationship between river water and groundwater in Bayin River Basin of northwest China using hydrochemistry and stable isotope. Arid Land Geography, 2018, 41 (4): 734-743
doi: 10.12118/j.issn.1000-6060.2018.04.08 |
[1] | 刘阳, 赵振斌, 李小永. 基于PPGIS的乡村旅游社区景观价值变化研究——以丽江束河古镇为例[J]. 地理科学, 2021, 41(2): 328-339. |
[2] | 张金茜, 巩杰, 柳冬青. 地理探测器方法下甘肃白龙江流域景观破碎化与驱动因子分析[J]. 地理科学, 2018, 38(8): 1370-1378. |
[3] | 卞子浩, 马小雪, 龚来存, 赵静, 曾春芬, 王腊春. 不同非空间模拟方法下CLUE-S模型土地利用预测——以秦淮河流域为例[J]. 地理科学, 2017, 37(2): 252-258. |
[4] | 刘吉平, 董春月, 盛连喜, 刘雁. 1955~2010年小三江平原沼泽湿地景观格局变化及其对人为干扰的响应[J]. 地理科学, 2016, 36(6): 879-887. |
[5] | 李仁杰, 谷枫, 郭风华, 傅学庆. 基于DEM的交通线文化景观感知与功能分段研究——紫荆关长城景观的实证[J]. 地理科学, 2015, 35(9): 1086-1094. |
[6] | 刘焱序, 王仰麟, 彭建, 袁媛, 马晶, 魏海. 城郊聚落景观的集聚特征分析方法选择研究[J]. 地理科学, 2015, 35(6): 674-682. |
[7] | 刘世梁, 刘琦, 王聪, 赵清贺, 邓丽, 董世魁. 基于地理加权回归的漫湾库区景观破碎化及影响因子分析[J]. 地理科学, 2014, 34(7): 856-862. |
[8] | 庞奖励, 乔晶, 黄春长, 查小春, 周亚利. 前处理过程对汉江上游谷地“古土壤”粒度测试结果的影响研究[J]. 地理科学, 2013, 33(6): 748-754. |
[9] | 靳英华, 许嘉巍, 梁宇, 宗盛伟. 火山干扰下的长白山植被分布规律[J]. 地理科学, 2013, 33(2): 203-208. |
[10] | 高江波, 蔡运龙. 区域景观破碎化的多尺度空间变异研究——以贵州省乌江流域为例[J]. 地理科学, 2010, 30(5): 742-747. |
[11] | 蔡运龙, 宋长青, 冷疏影. 中国自然地理学的发展趋势与优先领域[J]. 地理科学, 2009, 29(5): 619-626. |
[12] | 葛全胜, 赵名茶, 郑景云, 狄小春. 中国陆地表层系统分区——对黄秉维先生陆地表层系统理论的学习与实践[J]. 地理科学, 2003, 23(1): 1-6. |
[13] | 李阳兵, 侯建筠, 谢德体. 中国西南岩溶生态研究进展[J]. 地理科学, 2002, 22(3): 365-370. |
[14] | 张宏, 慈龙骏, 孙保平. 对荒漠化几个理论问题的初步探讨[J]. 地理科学, 1999, 19(5): 446-450. |
[15] | 肖笃宁. 论现代景观科学的形成与发展[J]. 地理科学, 1999, 19(4): 379-384. |
|