地理科学 ›› 2022, Vol. 42 ›› Issue (10): 1735-1746.doi: 10.13249/j.cnki.sgs.2022.10.006
洪思扬1(), 王红瑞2, 程涛3, 梁俊芬1, 方伟1(
)
收稿日期:
2020-10-19
修回日期:
2021-08-16
出版日期:
2022-10-10
发布日期:
2022-12-06
通讯作者:
方伟
E-mail:hongsy@mail.bnu.edu.cn;fangwei9103@163.com
作者简介:
洪思扬(1990−),女,辽宁辽阳人,博士,助理研究员,主要研究方向为水资源系统分析。E-mail: hongsy@mail.bnu.edu.cn
基金资助:
Hong Siyang1(), Wang Hongrui2, Cheng Tao3, Liang Junfen1, Fang Wei1(
)
Received:
2020-10-19
Revised:
2021-08-16
Online:
2022-10-10
Published:
2022-12-06
Contact:
Fang Wei
E-mail:hongsy@mail.bnu.edu.cn;fangwei9103@163.com
Supported by:
摘要:
核算了世界各国(地区)与中国,以及中国省际间的资源流通量,量化了贸易视角下水资源与能源的相互消耗量,从“源”与“汇”的视角描绘了各类资源从自然界进入经济系统到最终使用的整个过程。结果表明:① 中国虚拟水呈净流出状态,国际虚拟水贸易加重了中国的水资源压力;国际隐含能源贸易抵消了虚拟水净出口量的三分之一,缓解了中国的水资源压力。② 中国隐含能源呈净进口状态,国际隐含能源贸易缓解了中国的能源使用压力;国际虚拟水贸易加重了中国的能源使用压力,但影响程度较弱。③ 虚拟水主要通过农业和制造业进入社会经济系统,隐含能源主要通过矿业和制造业进入社会经济系统;固定资本形成和城镇生活消费是虚拟水和隐含能源的主要最终使用方式,数值分别为1735.42亿m3和2117.24亿m3,6.25×107 TJ和2.73×107 TJ。④ 中国各省份最终使用的水耗能源总量为8.73×106 TJ,占隐含能源总量的3.27%,低于能源耗水在虚拟水中的比重(9.63%)。能源省际贸易相比于水资源而言更为活跃,能源耗水在水?能纽带关系中起主导作用。
中图分类号:
洪思扬, 王红瑞, 程涛, 梁俊芬, 方伟. 国际及省际贸易视角下的中国虚拟水和隐含能源流通规律分析[J]. 地理科学, 2022, 42(10): 1735-1746.
Hong Siyang, Wang Hongrui, Cheng Tao, Liang Junfen, Fang Wei. Circulation Characteristics of Virtual Water and Embodied Energy in China from the Perspective of International and Inter-provincial Trade[J]. SCIENTIA GEOGRAPHICA SINICA, 2022, 42(10): 1735-1746.
[1] |
Yu C Q. China’s water crisis needs more than words[J]. Nature, 2011, 470(7334): 307
doi: 10.1038/470307a |
[2] |
Zhao X, Liu J Q, Liu Q Y et al. Physical and virtual water transfers for regional water stress alleviation in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(4): 1031-1035.
doi: 10.1073/pnas.1404130112 |
[3] |
Gao C X, Su B, Sun M et al. Interprovincial transfer of embodied primary energy in China: A complex network approach[J]. Applied Energy, 2018, 215: 792-807.
doi: 10.1016/j.apenergy.2018.02.075 |
[4] |
Wu X F, Chen G Q. Energy use by Chinese economy: A systems cross-scale input-output analysis[J]. Energy Policy, 2017, 108: 81-90.
doi: 10.1016/j.enpol.2017.05.048 |
[5] | Gaudard L, Avanzi F, Michele C D. Seasonal aspects of the energy-water nexus: The case of a run-of-the-river hydropower plant[J]. Applied Energy, 2018, 210(15): 604-612. |
[6] |
Shang Y Z, Lu S B, Ye Y T et al. China’s energy-water nexus: Hydropower generation potential of joint operation of the Three Gorges and Qingjiang cascade reservoirs[J]. Energy, 2018, 142: 14-32.
doi: 10.1016/j.energy.2017.09.131 |
[7] | Wakeel M, Chen B, Hayat T et al. Energy consumption for water use cycles in different countries: A review[J]. Applied Energy, 2016, 178(2016): 868-885. |
[8] |
Iskander S M, Zou S Q, Brazil B et al. Energy consumption by forward osmosis treatment of landfill leachate for water recovery[J]. Waste Management, 2017, 63: 284-291.
doi: 10.1016/j.wasman.2017.03.026 |
[9] |
陈珍, 成官文, 胡喆, 等. 广西典型城市污水处理厂能耗分析[J]. 桂林理工大学学报, 2017, 37(1): 186-190.
doi: 10.3969/j.issn.1674-9057.2017.01.028 |
Chen Zhen, Cheng Guanwen, Hu Zhe et al. Energy consumption analysis of typical municipal sewage plants in Guangxi. Journal of Guilin University of Technology, 2017, 37(1): 186-190.
doi: 10.3969/j.issn.1674-9057.2017.01.028 |
|
[10] |
洪思扬, 王红瑞, 来文立, 等. 我国能源耗水空间特征及其协调发展脱钩分析[J]. 自然资源学报, 2017(5): 800-813.
doi: 10.11849/zrzyxb.20160300 |
Hong Siyang, Wang Hongrui, Lai Wenli, et al. Spatial analysis and coordinated development decoupling analysis of energy-consumption water in China. Journal of Natural Resources, 2017(5): 800-813.
doi: 10.11849/zrzyxb.20160300 |
|
[11] |
Ali B, Kumar A. Life cycle water demand coefficients for crude oil production from five North American locations[J]. Water Research, 2017, 123: 290-300.
doi: 10.1016/j.watres.2017.06.076 |
[12] |
顾阿伦, 姜冬梅, 张月. 能源−水关系研究现状及对我国的启示[J]. 生态经济, 2016, 32(7): 20-28.
doi: 10.3969/j.issn.1671-4407.2016.07.005 |
Gu Alun, Jiang Dongmei, Zhang Yue. Review on energy-water nexus and implications for China. Ecological Economy, 2016, 32(7): 20-28.
doi: 10.3969/j.issn.1671-4407.2016.07.005 |
|
[13] | Zhang P P, Zhang L X, Chang Y et al. Food-energy-water (FEW) nexus for urban sustainability: A comprehensive review[J]. Resources, Conservation & Recycling, 2019, 142: 215-224. |
[14] | Mekonnen M M, Gerbens P W, Hoekstra A Y. The consumptive water footprint of electricity and heat: A global assessment[J]. Environmental Science Water Research & Technology, 2015, 1(3): 285-297. |
[15] |
Stokes J, Horvath A Y. Life cycle energy assessment of alternative water supply systems[J]. International Journal of Life Cycle Assessment, 2006, 11(5): 335-343.
doi: 10.1065/lca2005.06.214 |
[16] | Chen S, Chen B. Urban energy-water nexus: A network perspective[J]. Applied Energy, 2016, 184(15): 905-914. |
[17] |
Zhang C, Chen X X, Li Y et al. Water-energy-food nexus: Concepts, questions and methodologies[J]. Journal of Cleaner Production, 2018, 195: 625-639.
doi: 10.1016/j.jclepro.2018.05.194 |
[18] |
Wang S, Fath B, Chen B. Energy-water nexus under energy mix scenarios using input-output and ecological network analyses[J]. Applied Energy, 2019, 233-234: 827-839.
doi: 10.1016/j.apenergy.2018.10.056 |
[19] | 李桂君, 李玉龙, 贾晓菁, 等. 北京市水−能源−粮食可持续发展系统动力学模型构建与仿真[J]. 管理评论, 2016, 28(10): 11-26. |
Li Guijun, Li Yulong, Jia Xiaojing, et al. Establishment and simulation study of system dynamic model on sustainable development of water-energy-food nexus in Beijing. Management Review, 2016, 28(10): 11-26. | |
[20] |
Wang S, Chen B. Energy-water nexus of urban agglomeration based on multiregional input-output tables and ecological network analysis: A case study of the Beijing-Tianjin-Hebei region[J]. Applied Energy, 2016, 178: 773-783.
doi: 10.1016/j.apenergy.2016.06.112 |
[21] | Khan H F. A coupled modeling framework for sustainable watershed management in transboundary river basins[J]. Hydrology and Earth System Sciences Discussions, 2017, 21(12): 1-28. |
[22] |
Hickman W, Muzhikyan A, Farid A M. The synergistic role of renewable energy integration into the unit commitment of the energy water nexus[J]. Renewable Energy, 2017, 108: 220-229.
doi: 10.1016/j.renene.2017.02.063 |
[23] |
Helmbrecht J, Pastor J, Moya C. Smart solution to improve water-energy nexus for water supply systems[J]. Procedia Engineering, 2017, 186: 101-109.
doi: 10.1016/j.proeng.2017.03.215 |
[24] |
Nhamo L, Mabhaudhi T, Mpandeli S et al. An integrative analytical model for the water-energy-food nexus: South Africa case study[J]. Environmental Science and Policy, 2020, 109: 15-24.
doi: 10.1016/j.envsci.2020.04.010 |
[25] |
Wu N N, Xu Y J, Liu X. Water-Energy-Food nexus evaluation with a social network group decision making approach based on hesitant fuzzy preference relations[J]. Applied Soft Computing, 2020, 93: 106363
doi: 10.1016/j.asoc.2020.106363 |
[26] |
Ding N, Liu J R, Yang J X. Water footprints of energy sources in China: Exploring options to improve water efficiency[J]. Journal of Cleaner Production, 2018, 174: 1021-1031.
doi: 10.1016/j.jclepro.2017.10.273 |
[27] | 何洋, 纪昌明, 石萍. 水电站蓝水足迹的计算分析与探讨[J]. 水电能源科学, 2015, 33(2): 37-41. |
He Yang, Ji Changming, Shi Ping. Calculation analysis and discussion of blue water footprint for hydropower station. Water Resources and Power, 2015, 33(2): 37-41. | |
[28] | 郭磊, 黄本胜, 邱静, 等. 核电站淡水用水特征综合分析研究[J]. 水利学报, 2015, 44(5): 615-621. |
Guo Lei, Huang Bensheng, Qiu Jing, et al. Research on the characteristics of fresh water consumption in nuclear power plant. Shuili Xuebao, 2015, 44(5): 615-621. | |
[29] | 杨东, 刘晶茹, 杨建新, 等. 基于生命周期评价的风力发电机碳足迹分析[J]. 环境科学学报, 2015(3): 927-934. |
Yang Dong, Liu Jingru, Yang Jianxin, et al. Carbon footprint of wind turbine by life cycle assessment. Acta Scientiae Circumstantiae, 2015(3): 927-934. | |
[30] | 姜珊. 水−能源纽带关系解析与耦合模似[D]. 北京: 中国水利水电科学研究院, 2017. |
Jiang Shan. Scientific concept of water-energy nexus and coupling simulation. Beijing: China Institute of Water Resources and Hydropower Research, 2017. | |
[31] | 朱永霞. 社会水循环全过程能耗评价方法研究[D]. 北京: 中国水利水电科学研究院, 2017. |
Zhu Yongxia. Research on the evaluation method of energy consumption in the whole process of social water cycle. Beijing: China Institute of Water Resources and Hydropower Research, 2017. | |
[32] | 邵玲. 体现水的多尺度投入产出分析及其工程应用[D]. 北京: 北京大学, 2014. |
Shao Ling. Multi-scale input-output analysis of embodied water and its engineering applications. Peking: Peking University, 2014. | |
[33] | Hong S Y, Yang H, Wang H R et al. Water and energy circulation characteristics and their impacts on water stress at the provincial level in China[J]. Stochastic Environmental Research and Risk Assessment, 2021,35:147-164. |
[1] | 邹伟勇, 熊云军. 中国城市人工智能发展的时空演化特征及其影响因素[J]. 地理科学, 2022, 42(7): 1207-1217. |
[2] | 李艳, 孙阳, 姚士谋. 国家级媒体平台全球网络建构的地理学空间分析——以中国长城平台为例[J]. 地理科学, 2022, 42(5): 800-809. |
[3] | 唐培, 何建民, 冯学钢. 文化冲突对中国入境旅游需求的影响[J]. 地理科学, 2022, 42(4): 711-719. |
[4] | 于斌斌. 城市级别和市场分割对城镇化效率影响评价——以中国285个地级及以上城市为例[J]. 地理科学, 2022, 42(3): 476-486. |
[5] | 湛东升, 虞晓芬, 余妙志, 徐小任. 中国城市住房支付能力空间差异与分类调控策略[J]. 地理科学, 2022, 42(2): 219-231. |
[6] | 于婷婷, 左冰. 信息化对旅游经济效率的影响及其作用机制研究[J]. 地理科学, 2022, 42(10): 1717-1726. |
[7] | 金文纨, 朱晟君. 高铁开通对城市间出口产品结构相似度的影响研究[J]. 地理科学, 2022, 42(1): 95-103. |
[8] | 刘振, 戚伟, 刘盛和. 中国人口收缩的城乡分异特征及形成机理[J]. 地理科学, 2021, 41(7): 1116-1128. |
[9] | 彭飞, 宋雪珂, 张琦琦, 杨鑫. 中美及中国周边海洋国家地缘政治关系时空演化[J]. 地理科学, 2021, 41(4): 598-605. |
[10] | 邓昭, 李振福, 郭建科, 周玉涛. 中国港口地理学研究进展与展望[J]. 地理科学, 2021, 41(4): 606-614. |
[11] | 李小云, 杨宇, 刘毅, 陈源源, 夏四友. 中国人地关系的系统结构及2050年趋势模拟[J]. 地理科学, 2021, 41(2): 187-197. |
[12] | 朱媛媛, 汪紫薇, 罗静, 崔家兴. 中国中部重点农区新型城镇化与粮食安全耦合协调发展研究——以河南省为例[J]. 地理科学, 2021, 41(11): 1947-1958. |
[13] | 张子昂, 保继刚. 多重距离对中国入境与出境旅游流的影响:基于组态的视角[J]. 地理科学, 2021, 41(1): 13-21. |
[14] | 刘云刚, 刘玄宇, 张争胜. 渔民视角下中国南海的领域构建[J]. 地理科学, 2020, 40(7): 1062-1071. |
[15] | 夏函, 张万顺, 彭虹, 李琳, 黄攀攀, 夏晶晶. 基于主体功能区规划的中国城市化地区生态功能评估[J]. 地理科学, 2020, 40(6): 882-889. |
|