地理科学 ›› 2022, Vol. 42 ›› Issue (10): 1818-1828.doi: 10.13249/j.cnki.sgs.2022.10.014
王国华1,2,3(), 张妍1, 缑倩倩1, 张仲伍1, 孙九林4,5
收稿日期:
2021-10-21
修回日期:
2022-02-10
出版日期:
2022-10-10
发布日期:
2022-12-06
作者简介:
王国华(1984−),男,山西大同人,副教授,博士,研究方向为干旱半干旱区生态恢复。E-mail: gimi123@126.com
基金资助:
Wang Guohua1,2,3(), Zhang Yan1, Gou Qianqian1, Zhang Zhongwu1, Sun Jiulin4,5
Received:
2021-10-21
Revised:
2022-02-10
Online:
2022-10-10
Published:
2022-12-06
Supported by:
摘要:
以黑河流域中游典型绿洲边缘地表水(水库水、河流水)和地下水为研究对象,选取2005—2013年地下水和地表水水化学离子连续监测数据,综合运用描述性统计、Piper图、Gibbs图、离子相关性等方法,对水化学类型及其控制因素进行系统分析。结果表明:① 在2005—2013年地下水总溶解固体(TDS)呈上升趋势,而地表水(河流水和水库水)TDS呈下降趋势,同时,地下水TDS显著高于地表水;② 在年际尺度,地下水离子浓度均随时间增加而显著升高,而河流水和水库水离子整体呈下降趋势;在年内尺度,地下水NO3?离子浓度呈现8月显著高于5月的特征,河流水Ca2+、SO42?离子浓度8月高于5月,而水库水所有离子含量5月高于8月;③ 在2005—2013年,地表水和地下水水化学类型变化:地表水水化学类型在2005—2009年由HCO3?-SO42?-Ca2+-Mg2+ 转变为HCO3?-Ca2+-Na+,而2009—2013年水库水转变为HCO3?-SO42?-Ca2+-Mg2+,河水转变为HCO3?-SO42?-Ca2+-Na+;地下水水化学类型由HCO3?-SO42?-Ca2+-Mg2+ 型转变为SO42?-HCO3?-Ca2+-Na+-Mg2+ 型;地表水和地下水中SO42?、NO3?变异系数最大,是随环境因素变化的最主要敏感离子;④ Gibbs图表明,地表水和地下水中离子主要来源于岩石风化作用,方解石、白云岩等碳酸盐岩或硅酸盐岩矿物的风化溶解是该地区离子主要来源。
中图分类号:
王国华, 张妍, 缑倩倩, 张仲伍, 孙九林. 黑河流域中游绿洲边缘地表水和地下水水化学特征分析[J]. 地理科学, 2022, 42(10): 1818-1828.
Wang Guohua, Zhang Yan, Gou Qianqian, Zhang Zhongwu, Sun Jiulin. Hydro-chemical Characteristics of Surface Water and Groundwater in Oasis Edge in the Middle Reaches of the Heihe River Basin[J]. SCIENTIA GEOGRAPHICA SINICA, 2022, 42(10): 1818-1828.
表1
2005—2013年黑河中游地区不同水体主要离子特征值
类型 | pH | Ca2+ | K+ | Na+ | Mg2+ | NO3− | SO42− | Cl− | HCO3− | TDS | |
注:TDS为总溶解固体,单位:mg/L;各离子最大值、最小值、平均值、标准差的单位为mg/L。 | |||||||||||
地下水 | 最大值 | 8.40 | 113.37 | 12.29 | 112.67 | 88.89 | 82.41 | 39.29 | 86.78 | 366.20 | 1126.00 |
最小值 | 7.09 | 39.93 | 2.30 | 18.56 | 5.60 | 3.20 | 561.74 | 12.35 | 207.50 | 521.27 | |
平均值 | 7.05 | 84.67 | 5.29 | 71.0 | 55.4 | 30.46 | 233.04 | 55.95 | 307.81 | 855.16 | |
标准差 | 1.78 | 22.04 | 2.84 | 28.53 | 27.11 | 26.33 | 135.95 | 15.38 | 47.61 | 185.96 | |
变异系数% | 25.24 | 26.03 | 53.69 | 40.13 | 48.87 | 86.44 | 58.34 | 27.49 | 15.47 | 21.75 | |
河水 | 最大值 | 8.40 | 171.54 | 8.56 | 95.88 | 46.70 | 12.85 | 420.26 | 53.65 | 395.84 | 971.95 |
最小值 | 7.12 | 17.38 | 2.51 | 21.23 | 1.19 | 1.30 | 46.11 | 7.21 | 184.28 | 248.00 | |
平均值 | 7.74 | 61.10 | 4.73 | 50.68 | 29.75 | 6.31 | 134.27 | 33.83 | 262.7 | 538.33 | |
标准差 | 0.39 | 31.52 | 1.76 | 19.46 | 12.58 | 3.33 | 87.56 | 13.23 | 50.89 | 168.57 | |
变异系数% | 5.09 | 51.59 | 37.21 | 38.40 | 42.29 | 52.77 | 65.21 | 39.11 | 19.37 | 31.31 | |
水库水 | 最大值 | 8.30 | 75.35 | 9.34 | 65.60 | 58.94 | 18.5 | 213.73 | 50.34 | 312.42 | 790.03 |
最小值 | 7.37 | 32.3 | 0.15 | 22.77 | 3.22 | 1.28 | 41.49 | 13.86 | 163.53 | 240.00 | |
平均值 | 7.77 | 47.53 | 4.34 | 39.30 | 31.73 | 5.68 | 104.32 | 25.91 | 225.56 | 475.961 | |
标准差 | 0.275 | 11.84 | 2.36 | 11.24 | 13.79 | 5.14 | 53.09 | 10.12 | 44.86 | 169.22 | |
变异系数% | 3.53 | 24.91 | 54.38 | 28.60 | 43.46 | 90.49 | 50.89 | 40.32 | 19.89 | 35.56 |
表2
黑河中游不同水体水离子间的相关关系
水化学离子 | Ca2+ | K+ | Na+ | Mg2+ | NO3− | SO42− | Cl− | HCO3− | TDS | |
注:* 表示在 0.05 水平上( 双侧) 上显著相关 ;**表示在 0.01 水平( 双侧) 上显著相关。 | ||||||||||
地下水 | Ca2+ | 1 | ||||||||
K+ | 0.488* | 1 | ||||||||
Na+ | 0.907** | 0.498* | 1 | |||||||
Mg2+ | 0.702** | 0.035 | 0.784** | 1 | ||||||
NO3− | 0.599** | 0.218 | 0.563* | 0.538* | 1 | |||||
SO42− | 0.797** | 0.053 | 0.761** | 0.748** | 0.468 | 1 | ||||
Cl− | 0.503* | 0.071 | 0.387 | 0.394 | 0.741** | 0.364 | 1 | |||
HCO3− | 0.879** | 0.566* | 0.796** | 0.550* | 0.281 | 0.653** | 0.330 | 1 | ||
TDS | 0.780** | 0.092 | 0.664** | 0.778** | 0.489* | 0.744** | 0.536* | 0.631** | 1 | |
河水 | Ca2+ | 1 | ||||||||
K+ | −0.078 | 1 | ||||||||
Na+ | 0.088 | 0.090 | 1 | |||||||
Mg2+ | 0.219 | −0.423 | 0.166 | 1 | ||||||
NO3− | −0.319 | 0.307 | 0.136 | −0.355 | 1 | |||||
SO42− | 0.672 | −0.223 | 0.307 | 0.378 | −0.260 | 1 | ||||
Cl− | −0.014 | 0.117 | 0.756** | −0.114 | 0.243 | 0.027 | 1 | |||
HCO3− | 0.196 | 0.014 | −0.358 | −0.411 | 0.113 | −0.124 | 0.690** | 1 | ||
TDS | 0.779** | −0.373 | 0.153 | 0.354 | −0.506* | 0.574* | 0.142 | 0.417 | 1 | |
水库水 | Ca2+ | 1 | ||||||||
K+ | −0.181 | 1 | ||||||||
Na+ | 0.737** | 0.102 | 1 | |||||||
Mg2+ | 0.690** | 0.065 | 0.593* | 1 | ||||||
NO3− | 0.906** | −0.125 | 0.774** | 0.689** | 1 | |||||
SO42− | 0.738** | −0.406 | 0.484 | 0.774** | 0.750** | 1 | ||||
Cl− | 0.903** | −0.106 | 0.825** | 0.613* | 0.886** | 0.671** | 1 | |||
HCO3− | 0.896** | −0.094 | 0.776** | 0.565* | 0.751** | 0.558* | 0.862** | 1 | ||
TDS | 0.735** | −0.123 | 0.506* | 0.521* | 0.672** | 0.615* | 0.745** | 0.724** | 1 |
[1] | 张圆浩, 阿拉木萨, 印家旺, 等. 沙丘土壤含水量与地下水埋深时空变化特征[J]. 干旱区研究, 2020, 37(6): 1427-1436. |
Zhang Yuanhao, Ala Musa, Yin Jiawang, et al. Spatial and temporal variations in sand dune soil moisture content and groundwater depth. Arid Zone Research, 2020, 37(6): 1427-1436. | |
[2] | 潘国营, 刘永林, 甘容. 大沙河流域地表地下水化学特征与演变规律[J]. 水资源与水工程学报, 2009, 20(3): 58-61+65. |
Pan Guoying, Liu Yonglin, Gan Rong. Characters and evolution rule of the hydrochemistry of surface water and groundwater in Dashahe River Basin. Journal of Water Resources and Water Engineering, 2009, 20(3): 58-61+65. | |
[3] |
朱金峰, 刘悦忆, 章树安, 等. 地表水与地下水相互作用研究进展[J]. 中国环境科学, 2017, 37(8): 3002-3010.
doi: 10.3969/j.issn.1000-6923.2017.08.024 |
Zhu Jinfeng, Liu Yueyi, Zhang Shu'an, et al. Review on the research of surface water and groundwater interactions. China Environmental Science, 2017, 37(8): 3002-3010.
doi: 10.3969/j.issn.1000-6923.2017.08.024 |
|
[4] | 赵锐锋, 王福红, 张丽华, 等. 黑河中游地区耕地景观演变及社会经济驱动力分析[J]. 地理科学, 2017, 37(6): 920-928. |
Zhao Ruifeng, Wang Fuhong, Zhang Lihua, et al. Dynamic of farmland landscape and its socioeconomic driving forces in the middle reaches of the Heihe River. Scientia Geographica Sinica, 2017, 37(6): 920-928. | |
[5] | 司书红, 朱高峰, 苏永红. 西北内陆河流域的水循环特征及生态学意义[J]. 干旱区资源与环境, 2010, 24(9): 37-44. |
Si Shuhong, Zhu Gaofeng, Su Yonghong. The characteristics of water cycle and its ecological functions for inland river basin in northwestern China. Journal of Arid Land Resources and Environment, 2010, 24(9): 37-44. | |
[6] |
张清华, 赵玉峰, 唐家良, 等. 京津冀西北典型流域地下水化学特征及补给源分析[J]. 自然资源学报, 2020, 35(6): 1314-1325.
doi: 10.31497/zrzyxb.20200605 |
Zhang Qinghua, Zhao Yufeng, Tang Jialiang, et al. Hydrochemistry characteristics and the recharge source of groundwater in typical watersheds of Beijing-Tianjin-Hebei region, China. Journal of Natural Resources, 2020, 35(6): 1314-1325.
doi: 10.31497/zrzyxb.20200605 |
|
[7] | 常学礼, 韩艳, 孙小艳, 等. 干旱区绿洲扩展过程中的景观变化分析[J]. 中国沙漠, 2012, 32(3): 857-862. |
Chang Xueli, Han Yan, Sun Xiaoyan, et al. Landscape change during Oasis expansion process in Arid Zone. Journal of Desert Research, 2012, 32(3): 857-862. | |
[8] | 赵文智, 常学礼. 河西走廊水文过程变化对荒漠绿洲过渡带NDVI的影响[J]. 中国科学:地球科学, 2014, 44(7): 1561-1571. |
Zhao Wenzhi, Chang Xueli. Effect of hydrologic process changes on NDVI in desert-oasis ecotone of Hexi corridor. Science China: Earth Sciences, 2014, 44(7): 1561-1571. | |
[9] | 郜银梁, 陈军锋, 张成才, 等. 黑河中游灌区水化学空间变异特征[J]. 干旱区地理, 2011, 34(4): 575-583. |
Gao Yinliang, Chen Junfeng, Zhang Chengcai, et al. Hydrochemical characteristics of the irrigation area in the middle reaches of the Heihe River Basin. Arid Land Geography, 2011, 34(4): 575-583. | |
[10] | 杨铎. 黑河中游盆地地下水化学演化规律与水质特征[D]. 北京: 中国地质大学(北京), 2020. |
Yang Duo. Groundwater chemistry and its evolution in the middle reaches of Heihe basin. Beijing: China University of Geoscience (Beijing), 2020. | |
[11] |
Han Guilin, Liu Congqiang. Water geochemistry controlled by carbonate dissolution: A study of the river waters draining karst-dominated terrain, Guizhou Province, China[J]. Chemical Geology, 2004, 204(1-2): 1-21.
doi: 10.1016/j.chemgeo.2003.09.009 |
[12] | 沈贝贝, 吴敬禄, 吉力力·阿不都外力, 等. 巴尔喀什湖流域水化学和同位素空间分布及环境特征[J]. 环境科学, 2020, 41(1): 173-182. |
Shen Beibei, Wu Jinglu, Jilili Abuduwaili, et al. Hydrochemical and isotopic characteristics of the Lake Balkhash Catchment, Kazakhstan. Environmental Science, 2020, 41(1): 173-182. | |
[13] |
刘蔚, 王涛, 高晓清,等. 黑河流域水体化学特征及其演变规律[J]. 中国沙漠, 2004,24(6): 95-102.
doi: 10.3321/j.issn:1000-694X.2004.06.017 |
Liu Wei, Wang Tao, Gao Xiaoqing, et al. Distribution and evolution of water chemical characteristics in Heihe River Basin. Journal of Desert Research, 2004,24(6): 95-102.
doi: 10.3321/j.issn:1000-694X.2004.06.017 |
|
[14] | 马李豪. 黑河流域地下水水化学特征分析[D]. 西安: 西北大学, 2019. |
Ma Lihao. Water chemistry characteristics of groundwater in Heihe River Basin. Xi'an: Northwest University, 2019. | |
[15] | 温小虎, 仵彦卿, 常娟, 等. 黑河流域水化学空间分异特征分析[J]. 干旱区研究, 2004,21(1): 1-6. |
Wen Xiaohu, Wu Yanqing, Chang Juan, et al. Analysis on the spatial differentiation of hydrochemical characteristics in the Heihe River Watershed, Arid Zone Research, 2004, 21(1): 1-6. | |
[16] |
赵文智, 常学礼, 李启森, 等. 荒漠绿洲区芦苇种群构件生物量与地下水埋深关系[J]. 生态学报, 2003,23(6): 1138-1146.
doi: 10.3321/j.issn:1000-0933.2003.06.014 |
Zhao Wenzhi, Chang Xueli, Li Qisen, et al. Relationship between structural component biomass of reed population and ground water depth in desert oasis. Acta Ecologica Sinica, 2003,23(6): 1138-1146.
doi: 10.3321/j.issn:1000-0933.2003.06.014 |
|
[17] | Wang Guohua, Zhao Wenzhi. The spatio-temporal variability of groundwater depth in a typical desert-oasis ecotone[J]. Journal of Earth System Science, 2015, 124(4):799-806. |
[18] | 王文祥, 李文鹏, 蔡月梅, 等. 黑河流域中游盆地水文地球化学演化规律研究[J]. 地学前缘, 2021, 28(4): 184-193. |
Wang Wenxiang, Li Wenpeng, Cai Yuemei, et al. The hydrogeochemical evolution of groundwater in the middle reaches of the Heihe River Basin. Earth Science Frontiers, 2021, 28(4): 184-193. | |
[19] | 党慧慧, 董军, 董阳, 等. 甘肃梨园河流域地下水水化学演化规律[J]. 兰州大学学报(自然科学版), 2015, 51(4): 454-461. |
Dang Huihui, Dong Jun, Dong Yang, et al. Evolution of the groundwater hydro-geochemistry of Liyuan River Basin in Gansu Province. Journal of Lanzhou University (Natural Sciences), 2015, 51(4): 454-461. | |
[20] | 聂振龙, 陈宗宇, 程旭学, 等. 黑河干流浅层地下水与地表水相互转化的水化学特征[J]. 吉林大学学报(地球科学版), 2005,35(1): 48-53. |
Nie Zhenlong, Chen Zongyu, Cheng Xuxue, et al. The chemical information of the interaction of unconfined groundwater and surface water along the Heihe River, Northwestern China. Journal of Jilin University (Earth Science Edition), 2005,35(1): 48-53. | |
[21] |
吉喜斌, 康尔泗, 赵文智, 等. 黑河中游典型灌区水资源供需平衡及其安全评估[J]. 中国农业科学, 2005(5): 974-982.
doi: 10.3321/j.issn:0578-1752.2005.05.017 |
Ji Xibin, Kang Ersi, Zhao Wenzhi, et al. Analysis on supply and demand of water resources and evaluation of the security of water resources in irrigation region of the middle reaches of Heihe River. Scientia Agricultura Sinica, 2005(5): 974-982.
doi: 10.3321/j.issn:0578-1752.2005.05.017 |
|
[22] | 席海洋, 冯起, 司建华. 实施分水方案后对黑河下游地下水影响的分析[J]. 干旱区地理, 2007,30(4): 487-495. |
Xi Haiyang, Feng Qi, Si Jianhua. Influence of wate rtransport project on groundwater level at lower reaches of the Heihe River. Arid Land Geography, 2007,30(4): 487-495. | |
[23] |
杜文越, 何若雪, 何师意, 等. 桂江上游水化学特征变化及离子来源分析——以桂林断面为例[J]. 中国岩溶, 2017, 36(2): 207-214.
doi: 10.11932/karst20170208 |
Du Wenyue, He Ruoxue, He Shiyi, et al. Variation of hydrochemical characteristics and the ion source in the upstream of Guijiang river: A case study in Guilin setion. Carsologica Sinica, 2017, 36(2): 207-214.
doi: 10.11932/karst20170208 |
|
[24] |
曹晏风, 张明军, 瞿德业, 等. 祁连山东端地表及地下水水化学时空变化特征[J]. 中国环境科学, 2020, 40(4): 1667-1676.
doi: 10.3969/j.issn.1000-6923.2020.04.034 |
Cao Yanfeng, Zhang Mingjun, Qu Deye, et al. Temporal-spatial variation of surface and undergroundwater chemistry in the eastern part of Qilian Mountains. China Environmental Science, 2020, 40(4): 1667-1676.
doi: 10.3969/j.issn.1000-6923.2020.04.034 |
|
[25] | 李政红, 李亚松, 郝奇琛, 等. 福建厦门市硝酸型地下水特征、成因及其治理措施建议[J]. 中国地质, 2021, 48(5): 1441-1452. |
Li Zhenghong, Li Yasong, Hao Qichen, et al. Characteristics, genesis and treatment measures of NO3 type water in the Xiamen, Fujian . Geology in China 2021, 48(5): 1441-1452. | |
[26] |
Youngsook Huh, Mai yin Tsoi, Alexandr Zaitsev, et al. The fluvial geochemistry of the rivers of eastern Siberia: I. Tributaries of the Lena River draining the sedimentary platform of the Siberian Craton[J]. Geochimica et Cosmochimica Acta, 1998, 62(10): 1657-1676.
doi: 10.1016/S0016-7037(98)00107-0 |
[27] | Gibbs R J. Mechanisms controlling world water chemistry. [J]. Science,170 (1970): 1088 - 1090. |
[28] |
周俊, 吴艳宏. 贡嘎山海螺沟水化学主离子特征及其控制因素[J]. 山地学报, 2012, 30(3): 378-384.
doi: 10.3969/j.issn.1008-2786.2012.03.018 |
Zhou Jun, Wu Yanhong. Major ion chemistry of waters in Hailuogou catchment and the possible controls. Mountain Research, 2012, 30(3): 378-384.
doi: 10.3969/j.issn.1008-2786.2012.03.018 |
|
[29] | 冯亚伟, 孙自永, 补建伟, 等. 祁连山黑河源区八一冰川——黄藏寺段河水水文地球化学特征[J]. 冰川冻土, 2017, 39(3): 680-687. |
Feng Yawei, Sun Ziyong, Bu Jianwei, et al. The hydrogeochemical characteristics of the river water in the section from Bayi Glacier to Huargzangsi of the Heihe River, Qilian Mountains. Journal of Glaciology and Geocryology, 2017, 39(3): 680-687. | |
[30] | 武小波, 李全莲, 贺建桥, 等. 黑河上游夏半年河水化学组成及年内过程[J]. 中国沙漠, 2008,28(6): 1190-1196. |
Wu Xiaobo, Li Quanlian, He Jianqiao, et al. Hydrochemical characteristics and inner-year process of upper Heihe River in summer half year. Journal of Desert Research, 2008,28(6): 1190-1196. | |
[31] | 侯昭华, 徐海, 安芷生. 青海湖流域水化学主离子特征及控制因素初探[J]. 地球与环境, 2009, 37(1): 11-19. |
Hou Zhaohua, Xu Hai, An Zhisheng. Major ion chemistry of waters in lake Qinghai catchment and the possible controls. Earth and Environment, 2009, 37(1): 11-19. | |
[32] | 姜海宁, 谷洪彪, 迟宝明, 等. 新疆昭苏−特克斯盆地地表水与地下水转化关系研究[J]. 干旱区地理, 2016, 39(5): 1078-1088. |
Jiang Haining, Gu Hongbiao, Chi Baoming, et al. Interaction relationship between surface water and groundwater in Zhaosu-Tekes Basin, Xinjiang Uygur Autonomous Region, China. Arid Land Geography, 2016, 39(5): 1078-1088. | |
[33] | 孙英, 周金龙, 乃尉华, 等. 新疆喀什噶尔河流域地表水水化学季节变化特征及成因分析[J]. 干旱区资源与环境, 2019, 33(8): 128-134. |
Sun Ying, Zhou Jinlong, Nai Weihua. Seasonal variation characteristics and causes of surface water chemistry in Kashgar River Basin, Xinjiang. Journal of Arid Land Resources and Environmen, 2019, 33(8): 128-134. | |
[34] | Gaillardet J, Dupré B, Louvat P et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1):3-30. |
[35] | 任孝宗, 李建刚, 刘敏, 等. 浑善达克沙地东部地区天然水体的水化学组成及其控制因素[J]. 干旱区研究, 2019, 36(4): 791-800. |
Ren Xiaozong, Li Jiangang, Liu Min. Hydrochemical composition of natural waters and its affecting factors in the East Hunshandak Sandy Land. Arid Zone Research, 2019, 36(4): 791-800. | |
[36] | 孙从建, 陈若霞, 张子宇, 等. 山西浅层地下水水化学特性时空变化特征分析[J]. 干旱区地理, 2018, 41(2): 314-324. |
Sun Congjian, Chen Ruoxia, Zhang Ziyu, et al. Temporal and spatial variation of hydrochemical characteristics of shallow groundwater in Shanxi Province. Arid Land Geography, 2018, 41(2): 314-324. |
[1] | 傅笛, 金鑫, 金彦香, 毛旭锋, 翟婧雅. 基于SWAT-MODFLOW耦合模型的巴音河中游泽令沟盆地地表水−地下水转换关系研究[J]. 地理科学, 2022, 42(6): 1124-1132. |
[2] | 林若静, 孙从建, 高小朋, 王彦红. 汾河中下游地下水埋深变化及其控制因素分析[J]. 地理科学, 2022, 42(3): 527-535. |
[3] | 莫贵芬, 冯建中, 白林燕, 王中美, 李华林, 于涛. 2001—2018年中亚干旱区地表水资源时空变化特征[J]. 地理科学, 2022, 42(1): 174-184. |
[4] | 孙从建, 陈伟. 基于稳定同位素的海河源区地下水与地表水相互关系分析[J]. 地理科学, 2018, 38(5): 790-799. |
[5] | 奚旭, 张新长, 孙才志, 鲍建腾. 不确定性条件下的下辽河平原地下水脆弱性评价及空间分布软区划[J]. 地理科学, 2017, 37(9): 1439-1448. |
[6] | 安乐生, 周葆华, 赵全升, 刘贯群, 朱磊. 黄河三角洲土壤氯离子空间变异特征及其控制因素[J]. 地理科学, 2015, 35(3): 358-364. |
[7] | 陈陆望, 殷晓曦, 刘鑫. 华北隐伏型煤矿深部含水层补给源水化学与同位素示踪[J]. 地理科学, 2013, 33(6): 755-762. |
[8] | 孙才志, 李秀明. 基于ArcGIS的下辽河平原地下水功能评价[J]. 地理科学, 2013, 33(2): 174-180. |
[9] | 涂钢, 刘波, 王淑瑜. 基于陆面模式NCAR/CLM3.5的东北区域生长季地表干湿状况时空分布特征模拟研究[J]. 地理科学, 2012, 32(6): 746-751. |
[10] | 吐尔逊·艾山, 塔西甫拉提·特依拜, 买买提·阿扎提, 买买提依明·买买提. 渭干河灌区地下水埋深与矿化度时空分布动态[J]. 地理科学, 2011, 31(9): 1131-1137. |
[11] | 吴泊人, 钱家忠. 安徽省淮北平原地下水氟、溶解性总固体空间变异特征[J]. 地理科学, 2011, 31(4): 453-458. |
[12] | 金菊良, 刘丽, 汪明武, 李如忠, 周玉良. 基于三角模糊数随机模拟的地下水环境系统综合风险评价模型[J]. 地理科学, 2011, 31(2): 143-147. |
[13] | 叶茂, 徐海量, 龚君君, 安红燕. 不同胸径胡杨径向生长的合理生态水位研究[J]. 地理科学, 2011, 31(2): 172-177. |
[14] | 李如忠, 汪明武, 金菊良. 地下水环境风险的模糊多指标分析方法[J]. 地理科学, 2010, 30(2): 229-235. |
[15] | 朱芮芮, 郑红星, 刘昌明. 黄土高原典型流域地下水补给-排泄关系及其变化[J]. 地理科学, 2010, 30(1): 108-112. |
|