地理科学 ›› 2022, Vol. 42 ›› Issue (10): 1848-1856.doi: 10.13249/j.cnki.sgs.2022.10.017
• • 上一篇
龚婷婷1,2,3(), 高冰4(
), 吉子晨4, 曹慧宇4, 张蕴灵1,2,3
收稿日期:
2021-08-12
修回日期:
2022-01-01
出版日期:
2022-10-10
发布日期:
2022-12-06
通讯作者:
高冰
E-mail:amerindian@126.com;gb03@cugb.edu.cn
作者简介:
龚婷婷(1990−),女,江苏盐城人,高级工程师,博士,主要从事交通遥感应用技术研究。E-mail: amerindian@126.com
基金资助:
Gong Tingting1,2,3(), Gao Bing4(
), Ji Zichen4, Cao Huiyu4, Zhang Yunling1,2,3
Received:
2021-08-12
Revised:
2022-01-01
Online:
2022-10-10
Published:
2022-12-06
Contact:
Gao Bing
E-mail:amerindian@126.com;gb03@cugb.edu.cn
Supported by:
摘要:
基于MODIS温度数据,采用TTOP模型和Stefan公式模拟了青藏高原地区的冻土分布并计算了活动层厚度,并与地面观测结果进行了对比。结果表明:2003—2019年青藏高原多年冻土面积为1.01×106 km2;多年冻土活动层厚度区域平均值为1.79 m, 活动层厚度区域平均的变化率为3.67 cm/10a,且草甸地区的变化率明显大于草原地区,5100~5300 m高程带的活动层厚度变化速率最大。
中图分类号:
龚婷婷, 高冰, 吉子晨, 曹慧宇, 张蕴灵. 基于MODIS温度的青藏高原多年冻土活动层厚度变化研究[J]. 地理科学, 2022, 42(10): 1848-1856.
Gong Tingting, Gao Bing, Ji Zichen, Cao Huiyu, Zhang Yunling. Variation of Active Layer Thickness of Permafrost in the Qinghai-Tibetan Plateau Based on MODIS Temperature Product[J]. SCIENTIA GEOGRAPHICA SINICA, 2022, 42(10): 1848-1856.
[1] | 周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000. |
Zhou Youwu, Guo Dongxin, Qiu Guoqing et al. China permafrost. Beijing: Science Press, 2000. | |
[2] | 秦大河, 姚檀栋, 丁永建, 等. 冰冻圈科学辞典[M]. 北京: 气象出版社, 2014. |
Qin Dahe, Yao Tandong, Ding Yongjian et al. Cryosphere science dictionary. Beijing: Meteorological Press, 2014. | |
[3] |
吴晓东, 吴通华. 多年冻土退化对气候和人类产生重要影响[J]. 自然杂志, 2020, 42(5): 425-431.
doi: 10.3969/j.issn.0253-9608.2020.05.011 |
Wu Xiaodong, Wu Tonghua. Permafrost degradation has important effects on climate and human society. Chinese Journal of Nature, 2020, 42(5): 425-431.
doi: 10.3969/j.issn.0253-9608.2020.05.011 |
|
[4] |
吴明辉, 瞿德业, 李婷, 等. 祁连山疏勒河源区冻土退化对土壤微生物生物量碳氮的影响[J]. 地理科学, 2021, 41(1): 177-186.
doi: 10.13249/j.cnki.sgs.2021.01.019 |
Wu Minghui, Qu Deye, Li Ting et al. Effects of permafrost degradation on soil microbial biomass carbon and nitrogen in the Shule River Headwaters, the Qilian Mountains. Scientia Geographica Sinica, 2021, 41(1): 177-186.
doi: 10.13249/j.cnki.sgs.2021.01.019 |
|
[5] |
Zou Defu, Zhao Lin, Sheng Yu et al. A new map of permafrost distribution on the Tibetan Plateau[J]. Cryosphere, 2017, 11(6): 2527-2542.
doi: 10.5194/tc-11-2527-2017 |
[6] | 赵林, 胡国杰, 邹德富, 等. 青藏高原多年冻土变化对水文过程的影响[J]. 中国科学院院刊, 2019, 34(11): 1233-1246. |
Zhao Lin, Hu Guojie, Zou Defu et al. Permafrost changes and its effects on hydrological processes on Qinghai-Tibet Plateau. Bulletin of the Chinese Academy of Sciences, 2019, 34(11): 1233-1246. | |
[7] | 蒋观利, 吴青柏. 地球物理测井在多年冻土厚度和地下冰调查中的应用[J]. 地球物理学报, 2016, 59(9): 3482-3490. |
Jiang Guanli, Wu Qingbai. Application of geophysical logging in the survey of permafrost thickness and underground ice. Chinese Journal of Geophysics, 2016, 59(9): 3482-3490. | |
[8] | 杜二计, 赵林, 李韧. 探地雷达在祁连山多年冻土调查中的应用[J]. 冰川冻土, 2009, 31(2): 364-371. |
Du Erji, Zhao Lin, Li Ren. The application of ground penetrating radar to permafrost investigation in Qilian Mountains. Journal of Glaciology and Geocryology, 2009, 31(2): 364-371. | |
[9] | 罗栋梁. 黄河源区冻土时空变化和模型研究[D]. 北京: 中国科学院研究生院, 2012. |
Luo Dongliang. Monitoring, mapping and modeling of permafrost and active layer processes in the sources areas of the Yellow River (SAYR) on Northeastern Qinghai-Tibet Plateau. Beijing: Graduate School of the Chinese Academy of Sciences, 2012. | |
[10] |
李静, 盛煜, 吴吉春, 等. 黄河源区冻土分布制图及其热稳定性特征模拟[J]. 地理科学, 2016, 36(4): 588-596.
doi: 10.13249/j.cnki.sgs.2016.04.013 |
Li Jing, Sheng Yu, Wu Jichun et al. Mapping frozen soil distribution and modeling permafrost stability in the source area of the Yellow River. Scientia Geographica Sinica, 2016, 36(4): 588-596.
doi: 10.13249/j.cnki.sgs.2016.04.013 |
|
[11] |
Gao Bing, Yang Dawen, Qin Yue. Change in frozen soils and its effect on regional hydrology, upper Heihe basin, northeastern Qinghai-Tibetan Plateau[J]. Cryosphere, 2018, 12(2): 657-673.
doi: 10.5194/tc-12-657-2018 |
[12] |
Guo Donglin, Wang Huijun. Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981-2010[J]. Journal of Geophysical Research Atmospheres, 2013, 118(11): 5216-5230.
doi: 10.1002/jgrd.50457 |
[13] | 李锐超, 谢瑾博, 谢正辉. 不同大气强迫作用下陆面模式CAS-LSM多年冻土活动层厚度模拟与不确定性研究[J]. 气候与环境研究, 2021, 26(1): 31-44. |
Li Ruichao, Xie Jinbo, Xie Zhenghui. Simulation and uncertainly of active layer thickness of permafrost by Land Surface Model CAS-LSM under different atmospheric forcing data. Climatic and Environmental Research, 2021, 26(1): 31-44. | |
[14] |
Qin Yue, Lei Huimin, Yang Dawen et al. Long-term change in the depth of seasonally frozen ground and its ecohydrological impacts in the Qilian Mountains, northeastern Tibetan Plateau[J]. Journal of Hydrology, 2016, 542: 204-221.
doi: 10.1016/j.jhydrol.2016.09.008 |
[15] |
Shen Yan, Xiong Anyuan. Validation and comparison of a new gauge-based precipitation analysis over Chinese mainland[J]. International Journal of Climatology, 2016, 36(1): 252-265.
doi: 10.1002/joc.4341 |
[16] |
Dai Yongjiu, Shangguan Wei, Duan Qingyun et al. Development of a China dataset of soil hydraulic parameters using Pedotransfer functions for Land Surface Modeling[J]. Journal of Hydrometeorology, 2013, 14(3): 869-887.
doi: 10.1175/JHM-D-12-0149.1 |
[17] |
Qin Yanhui, Wu Tonghua, Zhao Lin et al. Numerical modeling of the active layer thickness and permafrost thermal state across Qinghai-Tibetan Plateau[J]. Journal of Geophysical Research-atmospheres, 2017, 122(21): 11604-11620.
doi: 10.1002/2017JD026858 |
[18] | Zhao Lin, Zou Defu, Hu Gguojie et al. A synthesis dataset of permafrost thermal state for the Qinghai-Xizang (Tibet) Plateau, China. Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2021-1, in review, 2021. |
[19] |
Luo Dongliang, Jin Huijun, Marchenko Sergey S et al. Difference between near-surface air, land surface and ground surface temperatures and their influences on the frozen ground on the Qinghai-Tibet Plateau[J]. Geoderma, 2018, 312: 74-85.
doi: 10.1016/j.geoderma.2017.09.037 |
[20] |
Cao Huiyu, Gao Bing, Gong Tingting et al. Analyzing changes in frozen soil in the source region of the Yellow River using the MODIS land surface temperature products[J]. Remote Sensing, 2021, 13(2): 180
doi: 10.3390/rs13020180 |
[21] |
Smith M W, Riseborough D W. Permafrost monitoring and detection of climate change[J]. Permafrost and Periglacial Processes, 1996, 7(4): 301-309.
doi: 10.1002/(SICI)1099-1530(199610)7:4<301::AID-PPP231>3.0.CO;2-R |
[22] |
Omar T. Farouki. The thermal properties of soils in cold regions[J]. Cold Regions Science and Technology, 1981, 5(1): 67-75.
doi: 10.1016/0165-232X(81)90041-0 |
[23] |
Stefan J. Ueber die theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere[J]. Annalen der Physik, 1891, 278(2): 269-286.
doi: 10.1002/andp.18912780206 |
[24] | 蒋观利, 吴青柏, 张中琼. 青藏高原不同高寒生态系统类型下多年冻土活动层水热过程差异研究[J]. 冰川冻土, 2018, 40(1): 7-17. |
Jiang Guanli, Wu Qingbai, Zhang Zhongqiong. Study on the differences of thermal-moisture dynamics in the active layer of permafrost in different alpine ecosystems on the Tibetan Plateau. Journal of Glaciology and Geocryology, 2018, 40(1): 7-17. |
[1] | 乔治, 卢应爽, 贺曈, 孙宗耀, 徐新良, 杨俊. 城市热岛斑块遥感识别及空间扩张路径研究——以北京市为例[J]. 地理科学, 2022, 42(8): 1492-1501. |
[2] | 李焱, 巩杰, 戴睿, 靳甜甜. 藏西南高原植被覆盖时空变化及其与气候因素和人类活动的关系[J]. 地理科学, 2022, 42(5): 761-771. |
[3] | 章典, 王蕾彬, MatthewR Bennett, 张盛达, 张海伟, 李腾, 张悦, 苏佳佳, 王晓晴. 青藏高原古人类的艺术创作——基于中更新世手脚印形态分析[J]. 地理科学, 2022, 42(5): 782-790. |
[4] | 陈发虎, 夏欢, 高玉, 张东菊, 杨晓燕, 董广辉. 史前人类探索、适应和定居青藏高原的历程及其阶段性讨论[J]. 地理科学, 2022, 42(1): 1-14. |
[5] | 马梓策, 孙鹏, 张强, 姚蕊. 基于MODIS数据的华北地区遥感干旱监测研究[J]. 地理科学, 2022, 42(1): 152-162. |
[6] | 黄祖宏, 王新贤, 张玮. 青藏高原地区人类发展水平评估及其演变分析[J]. 地理科学, 2021, 41(6): 1088-1095. |
[7] | 吴明辉, 瞿德业, 李婷, 刘放, 高雅月, 陈生云, 陈拓. 祁连山疏勒河源区冻土退化对土壤微生物生物量碳氮的影响[J]. 地理科学, 2021, 41(1): 177-186. |
[8] | 姜璐, 邢冉, 陈兴鹏, 薛冰. 青藏高原农区农户的家庭能源消费研究[J]. 地理科学, 2020, 40(3): 447-454. |
[9] | 张海朋, 樊杰, 何仁伟, 刘汉初. 青藏高原高寒牧区聚落时空演化及驱动机制——以藏北那曲县为例[J]. 地理科学, 2019, 39(10): 1642-1653. |
[10] | 陆晴, 吴绍洪, 赵东升. 1982~2013年青藏高原高寒草地覆盖变化及与气候之间的关系[J]. 地理科学, 2017, 37(2): 292-300. |
[11] | 李静, 盛煜, 吴吉春, 冯子亮, 宁作君, 胡晓莹, 张秀敏. 黄河源区冻土分布制图及其热稳定性特征模拟[J]. 地理科学, 2016, 36(4): 588-596. |
[12] | 齐文文, 张百平, 庞宇, 赵芳, 张朔. |
[13] | 罗栋梁, 金会军, 林琳, 游艳辉, 杨思忠, 王永平. 巴颜喀拉山青康公路沿线多年冻土和活动层分布特征及影响因素[J]. 地理科学, 2013, 33(5): 635-640. |
[14] | 胡国杰, 赵林, 李韧, 吴通华, 肖瑶, 焦克勤, 乔永平, 焦永亮. 基于COUPMODEL模型的冻融土壤水热耦合模拟研究[J]. 地理科学, 2013, 33(3): 356-362. |
[15] | 罗栋梁, 金会军, 林琳, 何瑞霞, 杨思忠, 常晓丽. 黄河源区多年冻土温度及厚度研究新进展[J]. 地理科学, 2012, 32(7): 898-904. |
|