论文

区域土壤植被系统蒸散发二源遥感估算

展开
  • 1. 中国科学院大气物理研究所东亚区域气候-环境重点实验室, 北京 100029;
    2. 南京大学地球科学与工程学院, 江苏 南京 210093
张万昌(1966- ),男,河南永城人,博士,"百人计划"研究员,博士生导师,主要从事生态水文参数遥感定量化、GIS区域建模以及水文水资源等方面研究。E-mail: zhangwc@tea.ac.cn

收稿日期: 2008-10-09

  修回日期: 2009-04-07

  网络出版日期: 2009-07-20

基金资助

国家重点基础研究发展规划项目(2006CB400502)、中国科学院"百人计划"择优支持项目(8-057493)资助。

Estimation of Regional Evapotranspiration Using Two Source Energy Balance Model and ETM+ Imagery

Expand
  • 1. Key Laboratory of Regional Climate-Environment Research for Temperate East Asia (RCE-TEA), Institute of Atmosphere Physics, Chinese Academy of Sciences, Beijing 100029;
    2. Department of Geo-informatics and Engineering, School of Earth Science & Engineering, Nanjing University, Nanjing, Jiangsu 210093

Received date: 2008-10-09

  Revised date: 2009-04-07

  Online published: 2009-07-20

摘要

针对干旱半干旱复杂地形区地表起伏、覆被不均一、植被稀疏的特征,论文对N'95二源遥感模型中地表净辐射计算方案以及地表反照率、零平面位移、动量粗糙长度、热量粗糙长度、动量和热量的稳定度校正项、土壤表面的空气动力学阻抗等算法有针对性地进行了修改。利用修改后的N'95模型, 选择位于黄土高原的地表起伏大, 植被稀疏的陕甘宁交界区为研究区, 计算了研究区的土壤蒸发、植被蒸腾和土壤-植被总蒸散发; 并利用附加阻抗法计算实际蒸散发的方法对N'95二源模型法遥感估算结果进行了间接精度评价, 比较验证表明N'95二源模型法估算的蒸散发结果合理,精高较高。

本文引用格式

张万昌, 高永年 . 区域土壤植被系统蒸散发二源遥感估算[J]. 地理科学, 2009 , 29(4) : 523 -528 . DOI: 10.13249/j.cnki.sgs.2009.04.523

Abstract

Concerning with the complex characteristics of the arid, semi-arid terrain surface, such as undulating topography, un-unique land use/covers and less vegetated land surface, etc. the N’95 model integrated with remote sensing techniques for the estimation of actual evapotranspiration was modified and improved with the focus on the estimation of the net radiation received by surface considering the influence of slope and aspect to the solar shortwave irradiance and surface long-wave irradiance. In addition to that, albedo, displacement height, roughness length for momentum, roughness length for heat, the diabatic correction factors for momentum and heat, the resistance to heat flow in the boundary layer directly ediately above the soil surface in the original N’95 model were modified with new approaches to enable the application of the model more easier in operation and much accurate in computation in terms of specific terrain surface conditions. The instantaneous evapotranspiration was estimated with the modified N’95 model by using the Landsat ETM+ data for an experimental study site located on the conjuncture area of Shaanxi, Gansu and Ningxia where the terrain surface is very undulating with less vegetation developed, heavy soil and water loss loess plateau. And then the spatial pattern of the instantaneous evapotranspiration was analyzed. Actual instantaneous evapotranspiration of 3033 verification points of the study area was calculated with the extra resistance method to compare with the modified N’95 model estimated, which suggested that the modified N’95 model can be used for the accurate estimation of evapotranspiration in arid and semi-arid rugged terrain area covered by sparse vegetation.

参考文献

[1] 辛晓洲,田国良,柳钦火.地表蒸散定量遥感的研究进展[J].遥感学报, 2003, 7 (3): 233~240.
[2] 詹志明.区域遥感蒸散发模型方法研究[J].遥感技术与应用, 2002, 17 (6): 364~369.
[3] Zhang W C,Chen J M,Ogawa K,et al. Estimation of evapotranspiration in the Urumqi River Basin by means of remote sensing & GIS technique[J].Hydrological Processes, 2005, 19(9): 1839-1854.
[4] 李晓军,李取生.东北地区参考作物蒸散确定方法研究[J].地理科学, 2004, 24 (2): 212~216.
[5] 付 炜.土壤类型遥感识别推理决策器研究[J].地理科学, 2002, 22 (1): 72~78.
[6] 颜长珍,吴炳方.晋陕蒙接壤区林草覆盖变化的遥感分析[J].地理科学, 2004, 24 (4): 465~471.
[7] 王爱玲,朱文泉,李 京,等.内蒙古生态系统服务价值遥感测量[J].地理科学, 2007, 27 (3): 325~330.
[8] 安 如,赵 萍,王慧麟,等.遥感影象中居民地信息的自动提取与制图[J].地理科学, 2005, 25 (1): 74~80.
[9] 刘 强,何 岩,章光新.苏打盐渍土土壤水分动态及其与浅层地下水的交换关系[J].地理科学,2008,28(6):782~787.
[10] 杨艳丽,史学正,于东升,等.区域尺度土壤养分空间变异及其影响因素研究[J].地理科学,2008,28(6):788~782.
[11] 陈 辉,刘劲松,王 卫.冀北地区植被指数变化特征及影响因素分析[J].地理科学,2008,28(6):793~798.
[12] 历 华,柳钦火,邹 杰.基于MODIS数据的长株潭地区NDBI和NDVI与地表温度的关系研究[J].地理课学,2009,29(2):262~267.
[13] 刘三超,张万昌,高懋芳,等.分布式水文模型结合遥感研究地表蒸散发[J].地理科学, 2007, 27 (3): 354~358.
[14] 刘雅妮,武建军,夏 虹,等.地表蒸散遥感反演双层模型的研究方法综述[J].干旱区地理, 2005, 28 (1): 65~71.
[15] Norman J M, Kustas W P, Humes K S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature[J]. Agric. For. Meteorol., 1995, 77(3): 263-293.
[16] Li F, Kustas W P, Prueger J H, et al. Utility of Remote Sensing Based Two-Source Energy Balance Model under Low- and High-Vegetation Cover Conditions [J]. Journal of Hydrometeorology, 2005, 6(6): 878-891.
[17] Kustas W P, Norman J M. Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover [J]. Agric. For. Meteorol., 1999, 94(1): 13-29.
[18] Anderson M C, Norman J M, Diak G R, et al. A two-source time-integrated model for estimating surface fluxes from thermal infrared satellite observations[J]. Remote Sens. Environ., 1997, 60(2): 195-216.
[19] Ross J. The radiation regime and architecture of plants [M].//Lieth H (Ed).Tasks for Vegetation Sciences 3. Dr. W. Junk, The Hague, Netherlands, 1981.
[20] Heggem E S F, Etzelmüller B,Berthling I. Topographic radiation balance models sensitivity and application in periglacial geomorphology [J]. Norwegian Journal of Geography, 2001, 55 (4): 203-211.
[21] Choudhury B J, Idso S B, Reginato R J. Analysis of an empirical model for soil heat flux under a growing wheat crop for estimating evaporation by an infrared-temperature based energy balance equation[J]. Agric. For. Meteorol., 1987, 39: 283-297.
[22] Priestly C H B, Taylor R J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon [J]. Weather Reu., 1972, 100: 81-92.
[23] Allen R K, Pereira L S, Raes D, et al. Crop evapotranspiration. Guideline for computing crop water requirements. FAO Irrigation and Drainage Paper No. 56[M]. United Nations Food and Agricultural Organization, Rome, 1998: 300.
[24] Conese C, Gilabert M A, Maselli F, et al. Topographic normalization of TM scenes through the use of an atmospheric correction method and digital terrain models[J]. Photogramm. Eng. Rem. S., 1993, 59 (12): 1745–1753.
[25] Hay J E, McKay D C. Estimating solar irradiation on inclined surfaces: a review and assessment of methodologies[J]. International Journal of Solar Energy, 1985, 3: 203-240.
[26] Hansen L B, Kamstrup N, Hansen B U. Estimation of net short-wave radiation by the use of remote sensing and a digital elevation model—a case study of a high arctic mountainous area [J]. Int. J. Remote Sen., 2002, 23(21): 4699-4718.
[27] Dozier H, Frew J. Rapid calculation of terrain parameters for radiation modeling from digital elevation data [J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28 (5): 963-969.
[28] Liang S L. Narrowband to broadband conversions of land surface albedo: I. algorithms[J]. Remote Sensing of Environment, 2000, 76 (2): 213-238.
[29] Moore I D, Norton T W, Williams J E. Modelling environmental heterogeneity in forested landscapes[J]. Journal of Hydrology, 1993, 150 (2): 717-747.
[30] Duguay C R. An approach to the estimation of surface net radiation in mountain areas using remote sensing and digital terrain data[J]. Theoretical and Applied Climatology, 1995, 52(1-2): 55-68.
[31] Brutsaert W. Evaporation into the atmosphere [M]. D. Reidel, Dordrecht, Holland. 1982:299.
[32] Choudhury B J, Monteith J L. A four-layer model for the heat budget of homogeneous land surfaces[J].Quart. J. Roy. Meteor. Soc., 1988, 114(480): 373-398.
[33] Zhang Y, Liu C, Lei Y, et al. An integrated algorithm for estimating regional latent heat flux and daily evapotranspiration[J]. Int. J. Remote Sen., 2006, 27 (1): 129 -152.
[34] Businger J A. A note on the Businger-Dyer profiles [J]. Boundary-Layer Meteorology, 1988, 42(1-2): 145-151.
[35] Webb E K. Profile relationships: The log-linear range, and extension to strong stability[J]. Quart. J. Roy. Meteor. Soc., 1970, 96 (407):67-90.
[36] Li F Q, Lyons T J. Estimation of regional evapotranspiration through remote sensing[J]. Journal of applied meteorology, 1998, 38 (11): 1644-1654.
[37] Biftu G F, Gan T Y. A semi-distributed, physics-based hydrologic model using remotely sensed and Digital Terrain Elevation Data for semi-arid catchments[J]. Int. J. Remote Sen., 2004, 25 (20): 4351-4379.
[38] Chavez P S Jr. Image-Based Atmospheric Correction-Revisited and Improved [J]. Photogramm. Eng. Rem. S., 1996, 62 (9): 1025-1036.
[39] Gao Y N, Zhang W C. A simple empirical topographic correction method for ETM+ imagery [J]. Int. J. Remote Sen., 2009. (in press)
[40] Li F Q, Lyons T J. Remote estimation of regional evapotranspiration [J]. Environ. Modell. & Softw., 2002,17 (1): 61-75.
文章导航

/