论文

中国入境旅游需求预测的神经网络集成模型研究

展开
  • 南京大学国土资源与旅游学系, 江苏 南京 210093

收稿日期: 2010-10-09

  修回日期: 2011-04-27

  网络出版日期: 1997-10-20

基金资助

国家自然科学基金(41001070)资助。

Neural Network Ensemble for Chinese Inbound Tourism Demand Prediction

Expand
  • Department of Land Resources and Tourism Sciences, Nanjing University, Nanjing, Jiangsu 210093, China

Received date: 2010-10-09

  Revised date: 2011-04-27

  Online published: 1997-10-20

摘要

对入境旅游需求进行科学合理的预测直接关系到中国入境旅游发展战略的制定和实施,具有积极的现实意义。目前,BP神经网络作为一种常见的传统机器学习方法,被广泛用于旅游需求预测建模。然而,由于BP神经网络存在诸如易过配、参数设置难、获得全局最优解难等局限,在实际应用中表现极不稳定。有鉴于此,拟将BP神经网络和集成学习技术相结合,构建入境旅游需求预测的神经网络集成模型,并对美国、英国、澳大利亚3个客源国近20 a来的入境游客量数据进行验证分析。结果表明,神经网络集成有效克服了单个BP神经网络在小规模数据集上的局限性,获得了比包括BP神经网络在内的传统机器学习技术和传统统计方法更为准确的预测结果,这有利于更加准确地把握中国入境旅游市场需求。

本文引用格式

张郴, 张捷 . 中国入境旅游需求预测的神经网络集成模型研究[J]. 地理科学, 2011 , 31(10) : 1208 -1212 . DOI: 10.13249/j.cnki.sgs.2011.010.1208

Abstract

Accurate prediction of the tourism demand is important for tourism management. The state-of-art methods for predictive modeling used in tourism research include traditional statistical methods, soft computing methods, and artificial intelligence methods. Note that artificial intelligence methods, which were introduced to tourism research in the 1990s, have greatly improved the predictive accuracy of modeling methods. Machine learning is an important area of artificial intelligence, which has been widely recognized as a powerful tool for intelligent data analysis. BP neural network, as one of the traditional machine learning technique, has been widely used to construct predictive model for intelligent data analysis. However, BP neural network suffers from several drawbacks, such as overfitting, difficulties in setting parameters, and local minima problem, and hence the performance of BP neural network is very unstable in practical applications. This paper combines an advanced machine learning paradigm named ensemble learning with BP neural network to build neural network ensemble for tourism demand prediction. This study conducts predictive modeling for tourism demand of three important tourist source countries of US, Britain and Australia for travel to Chinese mainland. The results show that, by combining a number of diverse neural networks, neural network ensemble significantly improves the predictive accuracy over traditional statistical methods and traditional machine learning methods including single BP neural network. Such method provides a better choice for more accurate predictive modeling for tourism demand.

参考文献

[1] Tihomir S. A Comparison of Two Econometric Models (OLS And SUR) for Forecasting Croatian Tourism Arrivals [M]. Zagreb: Croatian National Bank, 2002:112-145.
[2] Carey G, Law R. Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention [J]. Tourism Management, 2002, 23(3): 499-510.
[3] Carey G, Law R. Incorporating the rough sets theory into travel demand analysis [J]. Tourism Management, 2003, 24(5): 511-517.
[4] Ao S I. Using fuzzy rules for prediction in tourist industry with uncertainty [J]. Computer Society, 2003: 213-218.
[5] Hernandez-Lopez, M. Future tourists' characteristics and decisions: The use of genetic algorithms as a forecasting method [J]. Tourism Economics, 2004, 10(3): 245-262.
[6] Law R. Back-propagation learning in improving the accuracy of neural network-based tourism demand forecasting [J]. Tourism Management, 2000, 21(4): 331-340.
[7] Mitchell T. Mahcine Leanring [M]. New York: McGraw-Hill, 1997:45-63.
[8] Mjolsness E, DeCoste D. Machine learning for science: State of the art and future prospects [J]. Science, 2001, 293(5537): 2051-2055.
[9] Jiang Y, Li M, Zhou Z-H. Generation of comprehensible hypothesis from gene expression data [M]// Li J, et al. Lecture Notes in Bioinformatics 3916. Berlin: Springer, 2006: 116-123.
[10] Li M, Zhou Z-H. Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples [J]. IEEE Transactions on Systems, Man and Cybernetics-Part A: Systems and Humans, 2007, 37(6): 1088-1098.
[11] Law R. A neural network model to forecast Japanese demand for travel to Hong Kong [J]. Tourism Management, 1999, 20: 89-97.
[12] 雷可为, 陈 瑛. 基于BP神经网络和ARIMA组合模型的中国入境游客量预测[J]. 旅游学刊, 2007, 4(22): 20~25.
[13] Dietterich T G. Machine learning research: Four current diretions [J]. AI Magazine, 1997, 18(4): 97-136.
[14] Sollich P, Krogh A. Learning with ensembles: How over-fitting can be useful [M]//Touretzky D S, Mozer M C, Hasselmo M E. Advances in Neural Information Processing Systems 8. Cambridge, MA: The MIT Press, 1996: 190-196.
[15] Hansen L K, Salamon P. Neural network ensembles [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10):993-1001.
[16] Freund Y, Schapire R E. Experiments with a new boosting algorithm [M]//Proceedings of the 13th International Conference on Machine Learning, 1996: 148-156.
[17] Breiman L. Bias, variance, and arcing classifiers [M]//Technical Report 460. Berkeley CA: Statistics Department, University of California, 1996.
[18] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: A statistical view of boosting (with discussions) [J]. The Annals of Statistics, 2000, 28(2):337-407.
[19] Breiman L. Bagging predictors [J]. Machine Learning, 1996, 24(2):123-140.
[20] Bauer E, Kohavi R. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants [J]. Machine Learning, 1999, 36(1-2):105-139.
[21] Breiman L. Random forest [J]. Machine Learning, 2001, 45(1):5-32.
[22] Efron B, Tibshirani R. An Introduction to the Boostrap [M].New York: Chapman & Hall, 1993:78-90.
[23] 中华人民共和国国家旅游局. 中国旅游统计年鉴 (1991~2009) [M].北京:中国旅游出版社.
[24] 中国国家统计局. 中国统计年鉴 (1991~2009)[M/OL]. http://www.stats.gov.cn/tjsj/ndsj/.
[25] 中国国家统计局. 国际统计年鉴 (1991~2009)[M/OL]. http://www.stats.gov.cn/tjsj/qtsj/gjsj/.
[26] Qu H-L, Lam S. A travel demand model for Mainland Chinese tourists to Hong Kong [J]. Tourism Management, 1997, 18(8):593-597.
[27] 张玉娟, 赵定涛.中国入境旅游需求影响因素分析[J]. 经济理论与经济管理, 2008, (5):51~55.
[28] Zinkevich M. Online convex programming and generalized infinitesimal gradient ascent [M]//Proceedings of 20th International Conference on Machine Learning, 2003: 928-936.
[29] Witten I H, Frank E. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations [M]. San Francisco: Morgan Kaufmann, 2000:332-340.
文章导航

/